CS 1671/2071
Human Language Technologies

Session 11: Logistic regression, part 2

Michael Miller Yoder
February 17, 2025

University of _)
Pittsb};lrgh School of Computing and Information

Course logistics

e Homework 2 is due this Thu Feb 20

e If | emailed your group about choosing different directions or datasets
and | haven't heard from you, I'll check in with you this week

e Next project milestone: project proposal due Feb 28

o | will release instructions for that early this week

https://michaelmilleryoder.github.io/cs1671_spring2025/hw2.html

Midterm course evaluation (OMETs)

e (CS1671:
https://go.blueja.io/BJVNkUaUEOWIdL6VHILKXQ

e (S 2071:
https://go.blueja.io/fiEDPPOeM0eQ3kzYBucvew

e All types of feedback are welcome
(critical and positive)

e Completely anonymous, will not affect grades

e [et me know what's working and what to improve
on while the course is still running!

e Please be as specific as possible
e Available until Wed Feb 19

https://go.blueja.io/BJVNkUaUE0WIdL6VHILkXQ
https://go.blueja.io/fiEDPP0eM0eQ3kzYBucv6w

Lecture overview: logistic regression part 2

e Learning the weights for features in logistic regression
o Cross-entropy loss function
o Stochastic gradient descent

o Batch and mini-batch training

e Coding activity: error analysis

Review: classification with logistic regression

1. What iIs the necessary format for the input to logistic regression?
What will the output format be?

2. What is the equation for calculating ¥, the predicted class from an
Input vector x?

Logistic regression: learning the weights

Wait, where did the w's come from?

Supervised classification:
* We know the correct label y (either 0 or 1) for each x.
* But what the system produces is an estimate, y

We want to set w and b to minimize the distance between our
estimate () and the true yt.

* We need a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

Slide credit: Jurafsky & Martin

Learning components

A loss function:

cross-entropy loss

An optimization algorithm:
stochastic gradient descent

Slide credit: Jurafsky & Martin

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
y [= either O or 1]

We'll call this difference:
L(y ,y) = how much y differs from the true y

Slide credit: Jurafsky & Martin

Cross-entropy loss for binary classification

® (Cross-entropy loss: measure of
distance between true distribution
and predicted probability "
distribution of labels

0.6

® Logistic regression predicts p(y=0)

and p(y=1) in a Bernoulli 04

distribution. The true labels can

also be considered a Bernoulli i

distribution over possible labels. If | ‘ k

y=1, p(y=1) = 1 and p(y=0) = 0. 0 1

10

Cross-entropy loss for binary classification

Cross-entropy between Bernoulli distributions of
the predicted, where ¥ is the predicted label and
y is the true label

Minimize: LCE()?,y) = — [leg}H‘ (1 _)’) log(l _)’3)]

Claude Shannon

1

Slide credit: Jurafsky & Martin

Let's see if this works for our sentiment example

We want loss to be:
e smaller if the model estimate Is close to correct

* Dbigger If model I1s confused
Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is great . Another nice
touch is the music . | was overcome with the urge to get off the couch and

start dancing . It sucked me in, and it'll do the same to you..

12
Slide credit: Jurafsky & Martin

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

P(+|X) =P(Y =1|X)
=ow-x+b) =0, wix; +b)
= 0((2.5%3)+ (-5.0%2)+ (-1.2*1)+ (0.5*3)+ (2.0*0)+ (0.7*4.19)+b)
= 0(0.733+0.1)
=0(0.833) =0.7

Pretty well! What's the loss?

Lee(9,y) = —[ylogo(w-x+b)+(1—y)log(l — o(w-x+b))]
— [logo(w-x+b)]
= —log(.70)
= 36 ;

Slide credit: Jurafsky & Martin

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

ply=0[x) =1 - ply=1[x)

What's the loss?

Leg(9.y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
= —[log (I —o(w-x+D))]
—log (.30)
- 1.2

14
Slide credit: Jurafsky & Martin

Let's see if this works for our sentiment example

The loss when model was right (if true y=1)

Lcg(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l —c(w-x+b))]
= —[logo(w-x+b)]
= —log(.70)
= 36
s lower than the loss when model was wrong (if true y=0)
Leg(9,y) = —[ylogo(w-x+b)+(1 —y)log (1 —o(w-x+b))]
- —[log(1— G (w-x-+))
—log (.30)
= 1.2

Sure enough, loss was bigger in the case where the model was wrong!

15
Slide credit: Jurafsky & Martin

Stochastic gradient descent

16

Our Goal: Minimize the Loss

Let's make it explicit that the loss function is parameterized by weights 6 = (w, b).
We'll represent § as f(x; #) to make the dependency on 8 more obvious.

We want the weights that minimize the loss (Lc), averaged over all examples:

A T - -
6 = argmin — Y Lee(f(x; 0), 1)
arg;nln m 2. ce(f(x7;0),)

=1

17
Slide credit: David Mortensen

00—

SHcb o

Slide credit: David Mortensen

The Intuition of Gradient Descent

Slide credit: David Mortensen

- You are on a hill
- It is your mission to reach the river at

the bottom of the canyon (as quickly as
possible)

- What is your strategy?

1. Determine in which direction the
steepest downhill slope lies

2. Take a step in that direction

3. Repeat until a step in any direction will
take you up hill

19

Our Goal: Minimize the Loss

For logistic regression, the loss function is convex

» Just one minimum
- Gradient descent is guaranteed to find the minimum, no matter where you start

Non-Convex Function

Convex Function

local
minimum

global global
minimum minimum

Slide credit: David Mortensen

20

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss 4 Should we move
right or left from here?

A/

0 (goal)

21
Slide adapted from Jurafksy & Martin

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss !

slope of loss at Wl/

1s negative

So we'll move
positive (to the right)

Y

Slide adapted from jurafksy & Martin

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss !

one step
of gradient

slope of loss at Wl/" descent

1S negative

So we'll move
positive (to the right) BN

Y

Slide adapted from jurafksy & Martin

A Gradient is a Vector Pointing in the Direction of Greatest Increase

The GRADIENT of a function of many variables is a vector pointing in the direction of the
greatest increase in a function.

GRADIENT DESCENT: Find the gradient of the loss function at the current point and move in
the opposite direction.

24
Slide credit: David Mortensen

How Much Do We Move in a Step?

- We move by the value of the gradient (in our example, the slope)

d
mch(f(X; w),y)

weighted by the LEARNING RATE 7

- The higher the learning rate, the faster w changes:

d
Wiy = Wp — -n%ch(f (x;w),y)

25

Slide credit: David Mortensen

How Do We Do Gradient Descent in N Dimensions?

We want to know where in the N-dimensional space (of the N parameters that make up 6)
we should move.

The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of the N dimensions.

26

Slide credit: David Mortensen

Imagine 2 dimensions, w and b

Visualizing the gradient COSt(W’b)
vector at the red point

It has two dimensions
shown in the x-y plane

Slide adapted from jurafksy & Martin

But Real Gradients Have More than Two Dimensions

- They are much longer

- They have lots of weights

- For each dimension w;, the gradient component i tells us the slope w.rt. that variable

- “How much would a small change in w; influence the total loss function L?”
- The slope Is expressed as the partial derivative 9 of the loss ow;

- We can then define the gradient as a vector of these partials

28
Slide credit: David Mortensen

Computing the Gradient

Let's represent § as f(x;) to make things clearer:

2 L((:6).)
2 L(f(x:6).)
Vol(f(x:0),y) = | o LU(X:6),y)

| g L(f(x;6),Y) |
Note that, since we are representing the bias b as wy, 6 is more-or-less equivalent to w.
What is the final equation for updating 6 based on the gradient?

Oty = 0t — nVL(f(x; 0),y)

(For us, L is the cross-entropy loss Lc).

29

Slide credit: David Mortensen

So What Are These Partial Derivatives Used in Logistic Regression?

The textbook lays out the derivation in §5.10 but here’s the basic idea:

Here is the cross-entropy loss function (for binary classification):

Lee(V,y) = —[ylogo(w - X+ b) + (1 —y) log(1 — o(w- X+ b))]
The derivative of this function is:

OLce(9.y)

ow, = [o(W- X+ b) —ylx;

which is very manageable!

30

Slide credit: David Mortensen

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)

y is the set of training outputs (labels) y(l), y(z), vee y(

m)

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)

y is the set of training outputs (labels) y(l), y(z), vee y(

m)

60

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)

y is the set of training outputs (labels) y(l), y(z), vee y(

m)

06+0
repeat til done # see caption
For each training tuple (x(!), y()) (in random order)

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L is the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)
y is the set of training outputs (labels) y(l), y(z), vee y(

m)

0+0
repeat til done # see caption
For each training tuple (x @,y i)) (in random order)
1. Optional (for reportlng) # How are we doing on this tuple?
Compute ${ f(xD;0) # What is our estimated output §?
Compute the loss L(y(), y(":)) # How far off is j;‘(":) from the true output y(":) ?

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L is the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)
y is the set of training outputs (labels) y(l), y(z), vee y(

m)

0+0
repeat til done # see caption
For each training tuple (x @,y i)) (in random order)

1. Optional (for reportlng) # How are we doing on this tuple?
Compute ${ f(xD;0) # What is our estimated output §?
Compute the loss L(y(), y(":)) # How far off is j;‘(":) from the true output y(":) ?

2.8 VoL(f(x19;8),y®) # How should we move 6 to maximize loss?

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L is the loss function
f is a function parameterized by 0
X is the set of training inputs x(l), x(z), vee x(m)
y is the set of training outputs (labels) y(l), y(z), vee y(

m)

0+0
repeat til done # see caption
For each training tuple (x @,y i)) (in random order)
1. Optional (for reportlng) # How are we doing on this tuple?
Compute ${ f(xD;0) # What is our estimated output §?
Compute the loss L(y(), y(":)) # How far off is j;‘(":) from the true output y(":) ?
2.8 VoL(f(x19;8),y®) # How should we move 6 to maximize loss?
3.0-0 —ng # Go the other way instead

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 6
x 1s the set of training inputs x(l), x(- x(
vy is the set of training outputs (labels) y(1), y(2) .. y(m)

2) . xlm

600

repeat til done
For each training tuple (x(), y()) (in random order)

1. Optional (for reportmg) # How are we doing on this tuple?

Compute §() = f£(x(9);0) # What is our estimated output §?

Compute the loss L3), y()) # How far off is $()) from the true output y/)?
2. g VoL(f(x1);0),yd) # How should we move 6 to maximize loss?
3.00 —ng # Go the other way instead

return 6

Slide adapted from jurafksy & Martin

A Sidenote: Hyperparameters

The learning rate (our n) is a hyperparameter, a term you will keep hearing

- Set it too high? The learner will catapult itself across the minimum and may not
converge

- Set it too low? The learner will take a long time to get to the minimum, and may not
converge in our lifetime
But what are hyperparameters again?
- Hyperparameters are parameters in a machine learning model that are not learned
empirically

- They have to be set by the human who is designing the algorithm

38

Slide credit: David Mortensen

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
X, =3 (count of positive lexicon words)

X, =2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in @° are zero:
w,=w,=b =0
n=0.1

39

Slide adapted from jurafksy & Martin

Example of gradient descent

Update step for update 0 Is: w,=w,=b =0;
B d . X, =3; X, =2
9t+1 — Ot _ ”]@L(f(ﬂ% 9)3 y) y=1
where OLce($,)) = |o(w-x+b)—yx,
8wj
Gradient vector has 3 dimensions:
- JLce(Py) 7
dwy
Vi = 31%'5”(}‘,)’) — []
aLCEé:)’)
T Abh

Slide adapted from jurafksy & Martin

Example of gradient descent

Update step for update 0 Is: w,=w,=b =0;
d X =3, X, =2;
Ori1 = 0; — n@L(f(a:; 0), y) y1=1 2

8wj

Gradient vector has 3 dimensions:

= |o(w-x+b)—yx,

— aL A, —
—Si(ly 2 (o(w-x+b)—y)xi
Vb = _8L51i‘;()',y) = | (oc(w-x+b)—y)x2
BLCE(Z)“J,y) O-(W'x_i_b) _y
T

Slide adapted from jurafksy & Martin

Example of gradient descent

Now that we have a gradient, we compute the new parameter
vector 8" by moving 68° in the opposite direction from the
gradient:

Ori1 = 01 —

|
=
—

N— d9 L(f(z;0), y) N

ol —

Slide adapted from jurafksy & Martin

Example of gradient descent

Now that we have a gradient, we compute the new parameter
vector 8" by moving 6° in the opposite direction from the
gradient:

Ori1 = 01 —

I
o
Y

N— d9 L(f(z;0), y) N

Wi —1.5
ol=|wy, | —n| —-1.0] =
b | —0.5

Slide adapted from jurafksy & Martin

Batch and mini-batch training

46

- In stochastic gradient descent, the algorithm chooses one random example at each
iteration

- The result? Sometimes movements are choppy and abrupt

- In practice, instead, we usually compute the gradient over batches of training
Instances

- Entire dataset: BATCH TRAINING

- m examples (e.g., 512 or 1024): MINI-BATCH TRAINING

47
Slide credit: David Mortensen

Coding activity

48

Notebook: custom features for logistic regression

e C(lick on this nbgitpuller link

o Or find the link on the course website

e Open session11_error_analysis.ipynb

49

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main

	Slide 1
	Slide 2: Course logistics
	Slide 3: Midterm course evaluation (OMETs)
	Slide 4: Lecture overview: logistic regression part 2
	Slide 5: Review: classification with logistic regression
	Slide 6: Logistic regression: learning the weights
	Slide 7: Wait, where did the w’s come from?
	Slide 8: Learning components
	Slide 9:
	Slide 10: Cross-entropy loss for binary classification
	Slide 11: Cross-entropy loss for binary classification
	Slide 12: Let's see if this works for our sentiment example
	Slide 13: Let's see if this works for our sentiment example
	Slide 14: Let's see if this works for our sentiment example
	Slide 15: Let's see if this works for our sentiment example
	Slide 16: Stochastic gradient descent
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Let's first visualize for a single scalar w
	Slide 22: Let's first visualize for a single scalar w
	Slide 23: Let's first visualize for a single scalar w
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Imagine 2 dimensions, w and b
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Working through an example
	Slide 40: Example of gradient descent
	Slide 41: Example of gradient descent
	Slide 44: Example of gradient descent
	Slide 45: Example of gradient descent
	Slide 46: Batch and mini-batch training
	Slide 47
	Slide 48: Coding activity
	Slide 49: Notebook: custom features for logistic regression

