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CS 1671/2071
Human Language Technologies



● Thanks for your Homework 
2 submissions

● Kaggle results on private 
leaderboard
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Course logistics: 
homework



● Project proposal due this Fri Feb 28

● Set of 8 questions to answer with a PDF report

● Think about how you would apply approaches we have covered so far (n-
gram feature extraction, logistic regression, n-gram language modeling) 
to your task

● Feel free to email or book office hours with Michael to discuss

● Peer review where you will rate your own performance and the 
performance of other group members (will be posted)

○ Not used for grading, just to identify and address any issues
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Course logistics: project proposals

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#project-proposal


● Proposal presentations in class Mon Mar 10 (Mon after spring break)

● Michael will soon post:

○ More instructions

○ A link to a shared PowerPoint document to add your slides to
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Course logistics: project proposal presentations

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#project-proposal-presentation


● 20% participation

● What’s helping learning

○ Lecture slides, going over problems in class, notebooks, quizzes (that make you read the textbook)

● What could change to help learning

○ Slowing the pace

○ Notebooks:

■ More explanation (especially for those unfamiliar with Python). Images/diagrams of what code is doing could help.

■ Releasing filled-out notebooks after class

■ Either completely filled-in or less filled-in

■ Is ML programming just calling libraries?

● Changes I will try to make

○ Release filled-in notebooks after class

○ More time on explanation of code in notebooks
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Midterm OMET feedback



● This Wed Feb 26, Norah Almousa will be giving the lecture

○ Michael will be at a workshop downtown (feel free to still email me, etc)
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Course logistics
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Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

neural networks static word vectors language modeling
text classification

language modeling
text classification
sequence labeling

NLP applications and ethics machine translation, chatbots, information retrieval, biasMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Prerequisite skills for NLP text normalization, linear alg., prob., machine learning
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A brief history of NLP

The Georgetown-IBM Experiment. 
Credit: John Hutchins

● 1950s: foundations

○ Turing Test ("Computing Machinery and 
Intelligence" paper)

○ Georgetown-IBM Experiment translating 
Russian to English

● 1960s-1980s: symbolic reasoning

○ Processing language with hand-built rules

● 1990s-2010s: statistical NLP

○ Learn patterns from large corpora (feature-
based machine learning)

● 2000s-today: neural NLP

○ Powerful models of language from "deep" 
layers of neural networks trained on tons of 
text



● Word embeddings as input to neural networks

● Training neural networks

● Recurrent neural networks (RNNs)

● Review activity

● (If time allows) project work time
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Lecture overview: neural networks, part 1
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Feedforward neural networks with 
word embedding input



The real power of deep learning comes from the 
ability to learn features from the data

Instead of using hand-built human-engineered 
features for classification

Use learned representations like embeddings!
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Slide adapted from Jurafsky & Martin

Even better: representation learning
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Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!



This assumes a fixed size length (3)!  
Kind of unrealistic.   
Some simple solutions:

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a 
word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings
• For each dimension, pick the max value from all words
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Slide adapted from Jurafsky & Martin

Issue: texts come in different sizes
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Training feedforward neural networks
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Slide adapted from Jurafsky & Martin

Intuition: training a 2-layer Network
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



Slide adapted from Jurafsky & Martin
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Reminder: gradient descent for weight updates



Using the chain rule of derivates!   f (x) = u(v(x)) 
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Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

Slide adapted from Jurafsky & Martin

Where did that derivative come from?



These derivatives on the prior slide only give the updates for one weight 
layer: the last one! 

What about deeper networks? For training, we need the derivative of the 
loss with respect to each weight in every layer of the network 

• Lots of layers, different activation functions?

• But the loss is computed only at the very end of the network!

Solution:

• Even more use of the chain rule!!

• This process is called error backpropagation (Rumelhart, Hinton, 
Williams, 1986)
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Slide adapted from Jurafsky & Martin

How can I find that gradient for every weight in the network?
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Backward differentiation on a two layer network
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Backward differentiation on a two layer network
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For training, we need the derivative of the loss with 
respect to weights in early layers of the network 

• But loss is computed only at the very end of the 
network! 

Solution: backpropagation

Given the derivatives of all the functions in it we can 
automatically compute the derivative of the loss with 
respect to these early weights.
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Summary
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Recurrent neural networks (RNNs)
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



● Special kind of multilayer neural network for modeling sequences
● Hidden layers between the input and output receive input not just 

form the input layer, but also from the hidden layer at a preceding 
timestep

● RNNs can “remember” information from earlier on
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The architecture of an RNN

Slide credit: David Mortensen
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Slide credit: David Mortensen



● At each time step 𝑡, we sample 𝑤t from 𝑃(𝑊t| … ), and feed it to the 
next timestep!

● LM with this kind of generation process is called autoregressive LM
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Generation with RNN LMs

Slide adapted from Tianxing He
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Slide credit: David Mortensen
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Slide credit: David Mortensen

Teacher forcing
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Slide credit: David Mortensen

Teacher forcing
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Review activity



I don’t expect you to understand the intuition of backpropagation or 
RNNs the first time around. With a group, decide which concept you are 
most comfortable with and which you find most confusing:

1. Neural network training and backpropagation

2. RNNs

Make a list of questions you have about the concept you are most 
confused about. Then find a group that is comfortable with the concept 
you find confusing. Maybe they can answer your questions! I am also 
available to answer questions.
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These concepts are confusing!



Project work time

39
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