CS 1671/2071 Human Language Technologies

Session 14: Vector semantics, word2vec

Norah Almousa February 26, 2025

School of Computing and Information

Course logistics

• <u>Project proposal</u> is due this Fri Feb 28

- Any format is fine, just need to answer all the required questions
- Finding out what evaluation metric to use may require looking at other chapters of the textbook (such as Ch 13 on machine translation)
- Feel free to email or book office hours with Michael to discuss
- Submit one report per group on Canvas, but each group member should fill out a peer review form: <u>https://forms.office.com/r/T81fQeLfay</u>
- <u>Proposal presentations</u> are in class **Mon Mar 10** (Mon after spring break)
 - Add slides to this shared PowerPoint: <u>Session 15 Project proposal presentations</u> (CS 1671 Spring 2025).pptx
- Enjoy your spring break next week!

Overview: vector semantics, static word embeddings

- Vector semantics
- Distributional semantics
- Types of word vectors
- Word2vec
- Bias in word vectors
- Coding activity: explore word vectors

Vector semantics

Word representations in NLP draw on 2 areas of semantics

- a. Vector semantics
- b. Distributional semantics

Modeling semantics as points in vector space

- Words or other text segments are represented by vectors
- Multiple dimensions
- Nearer = more similar words

Term-document matrix: word vectors

Two words are similar if their vectors are similar.

Pairs of similar words?

Similarity and relatedness

- Synonyms: big/large, couch/sofa, automobile/car
- Similar: sharing some element of meaning
 - coffee/tea, car/bicycle, cow/horse
- Related: by a semantic field
 - coffee/cup, scalpel/surgeon

Distributional semantics

Distributional semantics

"The meaning of a word is its use in the language" [Wittgenstein 1953]

"You shall know a word by the company it keeps" [Firth 1957]

"If A and B have almost identical environments we say that they are synonyms" [Harris 1954]

Distributional semantics

Define the meaning of a word by its **distribution in language use**: its neighboring words or grammatical environments.

You Learn Words by Using Distributional Similarity

Consider

- A bottle of **pocarisweat** is on the table.
- Everybody likes pocarisweat.
- Pocarisweat makes you feel refreshed.
- They make pocarisweat out of ginger.

What does pocarisweat mean?

You Know Pocarisweat by the Company It Keeps

From context words humans can guess *pocarisweat* means a beverage like **coke**. How do you know?

- Other words can occur in the same context
- Those other words are often for beverages (that you drink cold)
- You assume that *pocarisweat* is probably similar

So the intuition is that **two words are similar if they have similar word contexts**.

Sample Contexts of ± 7 Words

sugar, a sliced lemon, a tablespoonful of
their enjoyment. Cautiously she sampled her first
well suited to programming on the digital
for the purpose of gathering data andapricot
pineapple
computer.preserve or jam, a pinch each of,
and another fruit whose taste she likened
In finding the optimal R-stage policy from
necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar
:						
apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0
:						

Types of word vectors

Shared Intuition: Words are Vectors of Numbers Representing Meaning

- Model the meaning of a word by "embedding" it in a vector space.
- The meaning of a word is a vector of numbers:
 - Vector models are also called embeddings
 - Often, the word *embedding* is reserved for *dense* vector representations
- In contrast, word meaning is represented in many (early) NLP applications by a vocabulary index ("word number 545"; compare to **one-hot representations**)

• Build "semantic space" by seeing which words are nearby in text

There are Two Kinds of Vector Models

• **Sparse embeddings** (vectors from term-document matrix)

- long (length of 20,000 to 50,000)
- sparse: most elements are 0
- **Dense embeddings** (Word2vec)
 - short (length of 50-1000)
 - dense (most elements are non-zero)

- 1. Short vectors may be **easier to use as features** in machine learning (less weights to tune).
- 2. Dense vectors may **generalize better** than storing explicit counts.
- 3. They may do **better at capturing synonymy**:
 - car and automobile are synonyms
 - But, in sparse vectors, they are represented as distinct dimensions
 - This fails to capture similarity between a word with *car* as a neighbor and a word with *automobile* as a neighbor

Methods for learning short, dense word embeddings

- Static, neural embeddings
 - Fixed embeddings for word types
 - Word2Vec, GloVe
- Contextual embeddings
 - Embeddings for words vary by context
 - o ELMo, BERT, LLMs

Word2vec

- Instead of counting words, train a classifier on a binary prediction task
 - Is w_1 likely to show up near w_2 ?

- Instead of counting words, train a classifier on a binary prediction task
 - Is *w*₁ likely to show up near *apricot*?

- Instead of counting words, train a classifier on a binary prediction task
 - Is w_1 likely to show up near *apricot*?

• Take the learned classifier weights as the word embeddings

- Instead of counting words, train a classifier on a binary prediction task
 - Is w_1 likely to show up near *apricot*?

- Take the learned classifier weights as the word embeddings
- Training techniques: skip-gram and CBOW

Word2vec: training supervision

- Self-supervision [Bengio et al. 2003, Collobert et al. 2011]
- Use naturally occurring text as labels
- A word *c* that occurs near *apricot* in the corpus counts as the gold "correct answer" for supervised learning

Word2vec training overview

- 1. Positive examples: the target word w and a neighboring context word c_{pos}
- 2. Negative examples: Randomly sample other words c_{neg} in the lexicon to pair with w
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the learned weights (*W*, *C*) as the word embeddings

Training for Embeddings

- We do not know what W and C are. So we learn them through an iterative process.
- We use a large corpus as a training data
- We also randomly sample the corpus to find words that are NOT in the context—negative sampling.

A soothsayer bids you beware the Ides of March
$$\cdot$$

 c_1 c_2 t c_3 c_4

Positive Examples		Negative Examples					
t	С	t	С	t	С		
ides	beware	ides	aardvark	ides	twelve		
ides	of	ides	puddle	ides	hello		
ides	March	ides	where	ides	dear		
ides	the	ides	coaxial	ides	forever		

Word2vec: learning embeddings

- Start with randomly initialized context *C* and target word *W* matrices
- Go through the positive and negative training pairs, adjusting word vectors such that we:
 - Maximize the similarity of the target word, context word pairs (*w*, c_{pos}) drawn from the positive data
 - Minimize the similarity of the (*w*, *c*_{*neg*}) pairs drawn from the negative data.

Skip-gram classifier

Classifier input pairs:

(target word *w*, context word *c*)

Classifier output: probabilities that *w* occurs with *c* P(+|w, c) P(-|w, c) = 1 - P(+|w, c)

Skip-gram classifier: calculating probabilities

- From input vectors, need to compare for similarity
- Start with dot product: sim(**w**,**c**) ≈ **w** · **c**
- To turn this into a probability, use the sigmoid function from logistic regression:

$$P(+|w,c) = \sigma(c \cdot w) = \frac{1}{1 + \exp(-c \cdot w)}$$

Training for Embeddings

Reminder: one step of gradient descent

- Direction: We move in the reverse direction from the gradient of the loss function
- Magnitude: we move the value of this gradient
 d/dw L(P(+|w,c) + P(-|w,c)) weighted by a learning rate η
- Higher learning rate means move *w* faster

Summary: How to learn word2vec embeddings

cat dog presentation poster [0.31, 0.24, 0.07, 0.65 ...] [0.37, 0.29, 0.06, 0.63 ...] [0.65, 0.93, 0.16, 0.78 ...] [0.57, 0.82, 0.21, 0.73 ...]

Summary: How to learn word2vec embeddings

- 1. Start with randomly initialized word embeddings
- 2. From a corpus, extract pairs of words that co-occur (positive)
- 3. Extract pairs of words that don't co-occur (negative)
- 4. Train a classifier to distinguish between positive and negative examples by slowly adjusting all the embeddings to improve the classifier performance
- 5. Keep the weights as our word embeddings

Final embeddings

- Can add representations for a word in *W* and in *C* together for final word vector for *W_i*
- Can just keep *W* and throw away *C*
- Can find "nearest neighbors" of certain words with cosine similarity in embedding space

Pretrained embeddings

- Skip-gram
- CBOW
- fastText
- GloVe

Training your own embeddings

- You can easily train skip-gram, CBOW, and fastText embeddings with gensim
- Straightforward Python interface

Embeddings reflect cultural biases [Bolukbasi et al. 2016]

- Paris : France :: Tokyo : Japan
- Sexist occupational stereotypes
 - father : doctor :: mother : *nurse*
 - man : computer programmer :: woman : homemaker
- Would be problematic to use embeddings in hiring searches for programmers

Conclusion: vector semantics, static word embeddings

- NLP typically represents words as vectors in spaces where distance ≈ semantic similarity
- Word2vec learns static embeddings (vectors) for words by predicting which words occur together in training data
- These embeddings are effective in downstream NLP tasks, but also reflect social biases of training data text

Coding activity

Notebook: examine word2vec embeddings

- <u>Click on this nbgitpuller link</u>
 - Or find the link on the course website
- Open session14_word2vec.ipynb