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CS 1671/2071
Human Language Technologies



● I will release the quiz for this week today, will be due this Thu Mar 20

● Homework 3 will be released this week, probably Fri Mar 21. Is due 
Apr 9

● There is a new textbook version, released 2025-01-12. I think it is 
largely the same as the old one from 2024-08-20 but just with typos 
fixed

○ If you notice anything strange with the alignment of the readings, let 
Michael know
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Course logistics



● I pushed back the due date for the project progress report, now due 
next Thu Mar 27. Instructions for that are posted on the project website

○ Part 1: Data statistics and exploratory data analysis (EDA)

○ Part 2: A result from baseline/initial approach

○ Part 3: Proposal on how to use LLMs for your task

○ Part 4: Open questions and challenges

○ I will set up a Canvas page for submissions soon

○ I am in the process of setting up OpenAI API account to use ($150 for class). 
In the meantime look into using Gemini free credits or other LLMs
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Course logistics

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report
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NLP talk this Wed: Anjalie Field



● Self-attention

● Multi-headed attention

● Transformer blocks

● Activity: work through self-attention
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Lecture overview: Transformers part 1
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Contextual word embeddings



They are static!  The embedding for a word doesn't reflect 
how its meaning changes in context.

The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for 
"it"?

Problem with static embeddings (word2vec)

Slide adapted from Jurafsky and Martin



• Intuition: a representation of meaning of a word 
should be different in different contexts!

• Contextual embedding: each word has a different 
vector that expresses different meanings 
depending on the surrounding words

• How to compute contextual embeddings? Attention

Contextual Embeddings

Slide adapted from Jurafsky and Martin



The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired

The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken 
or the street

Contextual Embeddings

Slide adapted from Jurafsky and Martin



● Build up the contextual embedding from a word by 
selectively integrating information from all the 
neighboring words

● We say that a word "attends to" some neighboring 
words more than others

Intuition of attention

Slide adapted from Jurafsky and Martin
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Self-attention



Self-attention illustrated

Source: The Illustrated Transformer



A mechanism for helping compute the embedding for a token 
by selectively attending to and integrating information from 
surrounding tokens (at the previous layer).

More formally: a method for doing a weighted sum of vectors.

Attention definition

Slide adapted from Jurafsky and Martin



High-level idea: instead of using vectors (like xi and x4) directly, 
we'll represent 3 separate roles each vector xi plays:

• query: As the current element being compared to the other 
inputs. 

• key: as an input that is being compared to the current element 
to determine a similarity

• value: a value of a preceding element that gets weighted and 
summed 

An actual attention head: slightly more complicated

Slide adapted from Jurafsky and Martinc
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Attention as a soft, averaging lookup table

Slide credit: John Hewitt



● We'll use matrices to project each vector xi into a 
representation of its role as query, key, value:

• query: WQ

• key: WK

• value: WV

Parameters: weight matrices for queries, keys and values

Slide adapted from Jurafsky and Martinc



● Given these 3 representation of xi

● To compute the similarity of current element xi with 
some element (for self-attention) xj

● We’ll use dot product between qi and kj. 

● And instead of summing up xj, we'll sum up vj

An Actual Attention Head: slightly more complicated

Slide adapted from Jurafsky and Martinc
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Multi-headed attention
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Slide credit: David Mortensen
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Hypothetical example of multi-headed attention

Slide credit: John Hewitt
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Multi-head self-attention
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Multi-head self-attention
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Add a feedforward neural transformation for nonlinearity

committee awards Strickland advanced opticswhoNobel
Source: Emma Strubell



38

Transformer blocks
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Transformer blocks

Each block consists of:

• Self-attention

• Layer normalization and residual 
connections: tricks to optimize learning

• Feedforward neural network

Output: 1 vector for every input token

Slide adapted from Jurafsky and Martin,  John Hewitt
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Activity: work through self-attention



● Example sentence: “we wash our cats” (don’t ask)

● Let’s just calculate the vector output, for one input word: “we”

● High-level points to remember before you get buried in the math:

○ Each token will have an output vector that integrates contextual information 
from other tokens in the sentence

○ Each token can play a role as a query, key, and value

● Parameters (learned through backpropagation) are assumed given:

○ WQ, WK, WV
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Calculate transformed output for one input word
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Slide credit: David Mortensen
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Dot product: vector ⋅ matrix
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Slide credit: David Mortensen

[1, 3, 3]

[1, 2, 2]

WQ=

1.5 1 2
3 −2 5
1 2 −2
9 4 2

x1 = [3, 0, 1, -0.5]

WK=

1 0.5 2
−2 0.5 3
.5 2 −3
5 3 2

x1 = [3, 0, 1, -0.5]

x1 = [3, 0, 1, -0.5]

Find q1 and k1
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Slide credit: David Mortensen

Assume dk = 64

q1 = [1, 3, 3]

k1 = [1, 2, 2]
k2 = [3, 4, 3]
k3 = [5, 2, 3]
k4 = [3, 2, 1]

v1 = [1, 0.5, -1]
v2 = [4, 5, -2]
v3 = [-3, 2, 2]
v4 = [1, 1, 6]

z1 = [1.27, 3.14, 0.1]



● Transformers are a high-performing NLP architecture based on self-
attention

● Transformer blocks perfom a number of transformations on vectors 
for input tokens, including integrating information from the 
surrounding tokens (self-attention)

● Transformer blocks produce one output vector per each input token, 
which is contextual, i.e. varies depending on what words surround 
the token

● Self-attention computation is easily parallelizable
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Wrapping up
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Questions?
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