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CS 1671/2071
Human Language Technologies



● Quiz on Canvas due tomorrow, Thu Mar 20

● Project progress report is due next Thu Mar 27. See the project website
for instructions

○ Part 1: Data statistics and exploratory data analysis (EDA)

○ Part 2: A result from baseline/initial approach

○ Part 3: Proposal on how to use LLMs for your task

○ Part 4: Open questions and challenges

● I am in the process of setting up OpenAI API account to use ($150 for 
class). In the meantime look into using Gemini free credits or other LLMs
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Course logistics

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report
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NLP talk by Anjalie Field 4:30pm today in SENSQ 5317



4

Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

neural networks static word vectors language modeling
text classification

transformers and LLMs contextual word vectors language modeling
text classification
sequence labeling

NLP applications and ethics machine translation, chatbots, information retrieval, biasMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Prerequisite skills for NLP text normalization, linear alg., prob., machine learning



Review: Describe self-
attention in transformers
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● Transformer input and output details

● Position embeddings

● Language modeling head

● Intro to LLMs

● Pretraining LLMs

● Sampling for LLM generation

● Harms from LLMs

● Coding activity: fine-tune GPT-2
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Lecture overview: Transformers part 2, intro to LLMs
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●Transformer input and output



Token and Position Embeddings

● The matrix X (of shape [N × d]) has an embedding 
for each word in the context. 

● This embedding is created by adding two distinct 
embedding for each input: token and position
embeddings

● Since self-attention doesn’t build in order 
information, we need to encode the order of the 
sentence in our keys, queries, and values

Slide adapted from Jurafsky & Martin



Token Embeddings

Embedding matrix E has shape |V | × d 
• One row for each of the |V | tokens in the vocabulary. 

• Each word is a row vector of d dimensions

Given:  string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224] 

2. Select the corresponding rows from E, each row an embedding

(row 5, row 4000, row 10532, row 2224). 

Slide adapted from Jurafsky & Martin



Position Embeddings

● There are many methods, but we'll just describe the 
simplest: absolute position.

● Goal: learn a position embedding matrix Epos of shape 1 × N
● Start with randomly initialized embeddings

• one for each integer up to some maximum length. 
• i.e., just as we have an embedding for the word fish, we’ll have an 

embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are 
learned along with other parameters during training. 

Slide adapted from Jurafsky & Martin



Each x is just the sum of word and position embeddings

X = Composite

Embeddings

(word + position)
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Language modeling head
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Slide adapted from Jurafsky & Martin
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Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Unembedding layer:  FFN layer projects from hL
N (shape 1 × d)  to probability 

distribution vector over the vocabulary 

Why "unembedding"? Tied to ET

Weight tying, we use the same weights 
for two different matrices

Unembedding layer maps from an embedding to a 
1x|V| vector of logits

Slide adapted from Jurafsky & Martin



Language modeling head
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Logits, the score vector u

One score for each of the |V | 
possible words in the 
vocabulary V . Shape 1 × |V |. 

Softmax turns the logits into 
probabilities over 
vocabulary. Shape 1 × |V |. 

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of

its occurrence with the n− 1 prior words. The context is thus of size n− 1. For

transformer language models, the context is the size of the transformer’s context

window, which can bequite large: 2K, 4K, even 32K tokens for very largemodels.

The job of the language modeling head is to take the output of the final trans-

former layer from the last token N and use it to predict the upcoming word at posi-

tion N+ 1. Fig. 9.14 showshow to accomplish this task, taking theoutput of the last

token at the last layer (the d-dimensional output embedding of shape [1⇥d]) and

producing a probability distribution over words (from which we will choose one to

generate).

Layer L
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Block
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1 x |V|

Logits 

Word probabilities

1 x |V|

hL
1

w1 w2 wN
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takes h
L
N and outputs a

distribution over vocabulary V

Figure9.14 The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hL
N) to a probability distribution over words in the

vocabulary V.

The first module in Fig. 9.14 is a linear layer, whose job is to project from the

output hL
N, which represents theoutput token embedding at position N from thefinal

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will havealogit

single score for each of the |V| possible words in thevocabulary V. The logit vector

u is thus of dimensionality 1⇥|V|.

This linear layer can be learned, but more commonly we tie this matrix to (the

transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the

transformer theembedding matrix (of shape [|V|⇥d]) isused to map from aone-hot

vector over the vocabulary (of shape [1⇥|V|]) to an embedding (of shape [1⇥d]).

And then in thelanguagemodel head, ET , thetransposeof theembedding matrix (of

shape [d⇥|V|]) is used to map back from an embedding (shape [1⇥d]) to a vector

over thevocabulary (shape [1⇥|V|]). In the learning process, E will beoptimized to

begood at doing both of thesemappings. Wetherefore sometimes call the transpose

ET theunembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hL
N ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a

given text. But themost important usage to generate text, which wedo by sampling

Slide adapted from Jurafsky & Martin



The final transformer language model
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Intro to large language models (LLMs): 
pretraining and finetuning



Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text

• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word

Slide adapted from Jurafsky & Martin



Large language models

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Slide adapted from Jurafsky and Martin



In contemporary NLP:

• All (or almost all) parameters in NLP networks are 
initialized via pretraining.

• Pretraining methods hide parts of the input from 
the model, and train the model to reconstruct those 
parts.

• This has been exceptionally effective at building 
strong:

• representations of language
• parameter initializations for strong NLP 
models
• probability distributions over language that 
we can sample from

19

Pretraining whole models

Slide adapted from John Hewitt



• MIT is located in __________, Massachusetts.

• I put ___ fork down on the table.

• The woman walked across the street, checking for traffic over ___ shoulder.

• I went to the ocean to see the fish, turtles, seals, and _____.

• Overall, the value I got from the two hours watching it was the sum total of the 
popcorn and the drink. The movie was ___.

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered 
his destiny. Zuko left the ______.

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

20

What can we learn from reconstructing the input?

Slide adapted from John Hewitt



Pretraining can improve NLP applications by serving as parameter 
initialization.

21

The pretraining + finetuning paradigm

Slide adapted from John Hewitt
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3 types of LLMs:
encoders, encoder-decoders, decoders



Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude,       BERT family, Flan-T5, Whisper
Llama, Mixtral HuBERT

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Slide adapted from Jurafsky and Martin



Decoder-only models

Also called:

• Causal LLMs

• Autoregressive LLMs

• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32
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• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?
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Slide adapted from Jurafsky and Martin



Encoders

Many varieties!
• Popular: Masked Language Models 

(MLMs)
• BERT family
• Trained by predicting words from 

surrounding words on both sides
• Are usually finetuned (trained on 

supervised data) for classification 
tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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• Nice to generate from; can’t condition on future words

Encoders
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• How do we train them to build strong representations?
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Slide adapted from Jurafsky and Martin



Encoder-Decoders

• Trained to map from one sequence 
to another (sequence to sequence)

• Very popular for:
• machine translation: map from one 

language to another

• speech recognition: map from 
acoustics to words

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32
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• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?
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Slide adapted from Jurafsky and Martin



27

Decoder LLMs



Decoder-only models can handle many tasks

● Many tasks can be turned into tasks of 
predicting words!

Slide adapted from Jurafsky and Martin
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Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string:

The sentiment of the sentence "I like 

Jackie Chan" is:  

2. And see what word it thinks comes next:

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3
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Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechoose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like

Slide adapted from Jurafsky and Martin



Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:
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word “negative” to seewhich ishigher:

P(positive|Thesentiment of thesentence “ I likeJackieChan” is:)

P(negative|Thesentiment of thesentence “ I likeJackieChan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask
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Slide adapted from Jurafsky and Martin



LLMs for summarization (using  tl;dr)
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● Take a corpus and ask the model to predict the next word!

● Train the model using gradient descent to minimize the error

● Same loss function as other neural models: cross-entropy loss

● Move the weights in the direction that assigns a higher probability to 
the true next word

34

Pretraining decoder LLMs

Slide adapted from Jurafsky and Martin
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Decoding: apply a “causal mask” for self-attention

Slide adapted from Tianxing He, John Hewitt

● To do auto-regressive LM, we need to apply 
a “causal” mask to self-attention, forbidding 
it from getting future context.

● At timestep t, we set 𝑎i = 0 for 𝑖 > 𝑡



● 2018’s GPT was a big success in 
pretraining a decoder!

● Transformer decoder with 12 layers, 
117M parameters.

● 768-dimensional hidden states, 
3072-dimensional feed-forward 
hidden layers.

● Trained on BooksCorpus: over 7000 
unique books.
○ Contains long spans of 

contiguous text, for learning 
long-distance dependencies.

36

Generative Pretrained Transformer (GPT; Radford et al. 2018)

Slide adapted from John Hewitt, David Mortensen



● They are basically larger and larger 
autoregressive transformer LMs trained 
on larger and larger amounts of data

● They have shown amazing language 
generation capability when you give it a 
prompt (aka. prefix, the beginning of a 
paragraph)

37

GPT-2, GPT-3, GPT-4 from OpenAI

Slide adapted from Tianxing He
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Generation example from the GPT-2 model

A sample from GPT2 (with top-k sampling)
Slide credit: Tianxing He
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Sampling for LLM generation



● This task of choosing a word to generate based on the model’s 
probabilities is called decoding. 

● The most common method for decoding in LLMs: sampling. 

● Sampling from a model’s distribution over words:

○ choose random words according to their probability assigned by the model. 

● After each token we’ll sample words to generate according to their 
probability conditioned on our previous choices, 

○ A transformer language model will give the probability

Decoding and Sampling

Slide adapted from Jurafsky and Martin



Random sampling

Slide adapted from Jurafsky and Martin



Random sampling doesn't work very well

● Even though random sampling mostly generate 
sensible, high-probable words, 

● There are many odd, low- probability words in 
the tail of the distribution 

● Each one is low- probability but added up they 
constitute a large portion of the distribution 

● So they get picked enough to generate weird 
sentences

Slide adapted from Jurafsky and Martin



Factors in word sampling: quality and diversity

Emphasize high-probability words 
+ quality: more  accurate, coherent, and factual, 
- diversity: boring, repetitive. 

Emphasize middle-probability words 
+ diversity: more creative, diverse, 
- quality: less factual, incoherent

Slide adapted from Jurafsky and Martin



Top-k sampling:

1. Choose # of words k 
2. For each word in the vocabulary V , use the language 

model to compute the likelihood of this word given the 
context p(wt |w<t ) 

3. Sort the words by likelihood, keep only the top k most 
probable words. 

4. Renormalize the scores of the k words to be a 
legitimate probability distribution. 

5. Randomly sample a word from within these remaining k 
most-probable words according to its probability. 

Slide adapted from Jurafsky and Martin



Temperature sampling

Reshape the distribution instead of truncating it
Intuition from thermodynamics, 

• a system at high temperature is flexible and can 
explore many possible states,

• a system at lower temperature is likely to explore a 
subset of lower energy (better) states.

In low-temperature sampling,  (τ ≤ 1) we smoothly
• increase the probability of the most probable words
• decrease the probability of the rare words. 

Slide adapted from Jurafsky and Martin



Temperature sampling

Divide the output by a temperature parameter τ 
before passing it through the softmax.

Instead of

We do  

A lower τ pushes high-probability words higher and low probability 
word lower due to the way softmax works

Slide adapted from Jurafsky and Martin
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●Pretraining data and harms of LLMs



LLMs are mainly trained on the web

● Common crawl, snapshots of the entire web 
produced by the non- profit Common Crawl with 
billions of pages

● Colossal Clean Crawled Corpus (C4; Raffel et al. 
2020), 156 billion tokens of English, filtered

● What's in it? Mostly patent text documents, 
Wikipedia, and news sites 

Slide adapted from Jurafsky and Martin



The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

dialog
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Big idea

● Text contains enormous amounts of 
knowledge

● Pretraining on lots of text with all that 
knowledge is what gives language 
models their ability to do so much

Slide adapted from Jurafsky and Martin



But there are problems with scraping from the web

● Copyright: much of the text in these datasets is 
copyrighted
• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question

● Data consent
• Website owners can indicate they don't want their site 

crawled

● Privacy: 
• Websites can contain private IP addresses and phone 

numbers

Slide adapted from Jurafsky and Martin



Hallucination
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Harms from LLMs

Slide adapted from Jurafsky and Martin

Copyright

Privacy



Toxicity and abuse

53

Harms from LLMs

Slide adapted from Jurafsky and Martin

Misinformation



● Transformer-based language models pretrained on lots of text are called 
large language models (LLMs)

● LLMs can have decoder-only, encoder-only, or encoder-decoder 
architectures

● Decoder-only LLMs can cast many different NLP tasks as word prediction

● There are many different sampling approaches that balance diversity 
and quality in text generation from LLMs

● Harms from LLMs include hallucinating false information, leaking private 
information from training data, generating abuse and misinformation

54

Conclusion



Coding activity
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● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’ 
server

56

Notebook: finetune GPT-2 on Shakespeare

● Open session17_gpt2_shakespeare.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main
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