
Session 17: Transformers part 2, introduction to LLMs

Michael Miller Yoder

March 19, 2025

1

CS 1671/2071
Human Language Technologies

● Quiz on Canvas due tomorrow, Thu Mar 20

● Project progress report is due next Thu Mar 27. See the project website
for instructions

○ Part 1: Data statistics and exploratory data analysis (EDA)

○ Part 2: A result from baseline/initial approach

○ Part 3: Proposal on how to use LLMs for your task

○ Part 4: Open questions and challenges

● I am in the process of setting up OpenAI API account to use ($150 for
class). In the meantime look into using Gemini free credits or other LLMs

2

Course logistics

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report

3

NLP talk by Anjalie Field 4:30pm today in SENSQ 5317

4

Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

neural networks static word vectors language modeling
text classification

transformers and LLMs contextual word vectors language modeling
text classification
sequence labeling

NLP applications and ethics machine translation, chatbots, information retrieval, biasMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Prerequisite skills for NLP text normalization, linear alg., prob., machine learning

Review: Describe self-
attention in transformers

5

● Transformer input and output details

● Position embeddings

● Language modeling head

● Intro to LLMs

● Pretraining LLMs

● Sampling for LLM generation

● Harms from LLMs

● Coding activity: fine-tune GPT-2
6

Lecture overview: Transformers part 2, intro to LLMs

7

●Transformer input and output

Token and Position Embeddings

● The matrix X (of shape [N × d]) has an embedding
for each word in the context.

● This embedding is created by adding two distinct
embedding for each input: token and position
embeddings

● Since self-attention doesn’t build in order
information, we need to encode the order of the
sentence in our keys, queries, and values

Slide adapted from Jurafsky & Martin

Token Embeddings

Embedding matrix E has shape |V | × d
• One row for each of the |V | tokens in the vocabulary.

• Each word is a row vector of d dimensions

Given: string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224]

2. Select the corresponding rows from E, each row an embedding

(row 5, row 4000, row 10532, row 2224).

Slide adapted from Jurafsky & Martin

Position Embeddings

● There are many methods, but we'll just describe the
simplest: absolute position.

● Goal: learn a position embedding matrix Epos of shape 1 × N
● Start with randomly initialized embeddings

• one for each integer up to some maximum length.
• i.e., just as we have an embedding for the word fish, we’ll have an

embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are
learned along with other parameters during training.

Slide adapted from Jurafsky & Martin

Each x is just the sum of word and position embeddings

X = Composite

Embeddings

(word + position)

Transformer Block

J
a
n

e
t

1

w
ill

2

b
a
c
k

3
Janet will back the bill

th
e

4

b
ill

5

+ + + + +

Position

Embeddings

Word

Embeddings

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Unembedding layer: FFN layer projects from hL
N (shape 1 × d) to probability

distribution vector over the vocabulary

Why "unembedding"? Tied to ET

Weight tying, we use the same weights
for two different matrices

Unembedding layer maps from an embedding to a
1x|V| vector of logits

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Logits, the score vector u

One score for each of the |V |
possible words in the
vocabulary V . Shape 1 × |V |.

Softmax turns the logits into
probabilities over
vocabulary. Shape 1 × |V |.

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of

its occurrence with the n− 1 prior words. The context is thus of size n− 1. For

transformer language models, the context is the size of the transformer’s context

window, which can bequite large: 2K, 4K, even 32K tokens for very largemodels.

The job of the language modeling head is to take the output of the final trans-

former layer from the last token N and use it to predict the upcoming word at posi-

tion N+ 1. Fig. 9.14 showshow to accomplish this task, taking theoutput of the last

token at the last layer (the d-dimensional output embedding of shape [1⇥d]) and

producing a probability distribution over words (from which we will choose one to

generate).

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding layer

U = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L
N and outputs a

distribution over vocabulary V

Figure9.14 The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hL
N) to a probability distribution over words in the

vocabulary V.

The first module in Fig. 9.14 is a linear layer, whose job is to project from the

output hL
N, which represents theoutput token embedding at position N from thefinal

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will havealogit

single score for each of the |V| possible words in thevocabulary V. The logit vector

u is thus of dimensionality 1⇥|V|.

This linear layer can be learned, but more commonly we tie this matrix to (the

transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the

transformer theembedding matrix (of shape [|V|⇥d]) isused to map from aone-hot

vector over the vocabulary (of shape [1⇥|V|]) to an embedding (of shape [1⇥d]).

And then in thelanguagemodel head, ET , thetransposeof theembedding matrix (of

shape [d⇥|V|]) is used to map back from an embedding (shape [1⇥d]) to a vector

over thevocabulary (shape [1⇥|V|]). In the learning process, E will beoptimized to

begood at doing both of thesemappings. Wetherefore sometimes call the transpose

ET theunembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hL
N ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a

given text. But themost important usage to generate text, which wedo by sampling

Slide adapted from Jurafsky & Martin

The final transformer language model

wi

Sample token to

generate at position i+1

feedforward

layer norm

attention

layer norm

U

Input token

Language
Modeling

Head

Input

Encoding E

i+

…

logits

feedforward

layer norm

attention

layer norm

Layer 1

Layer 2

h1
i = x2

i

x1
i

h2
i = x3

i

feedforward

layer norm

attention

layer norm

hL
i

hL-1
i = xL

i

y1 y2 y|V|…Token probabilities

u1 u2 u|V|…

softmax

wi+1

Layer L
Slide adapted from Jurafsky & Martin

16

Intro to large language models (LLMs):
pretraining and finetuning

Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text

• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word

Slide adapted from Jurafsky & Martin

Large language models

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Slide adapted from Jurafsky and Martin

In contemporary NLP:

• All (or almost all) parameters in NLP networks are
initialized via pretraining.

• Pretraining methods hide parts of the input from
the model, and train the model to reconstruct those
parts.

• This has been exceptionally effective at building
strong:

• representations of language
• parameter initializations for strong NLP
models
• probability distributions over language that
we can sample from

19

Pretraining whole models

Slide adapted from John Hewitt

• MIT is located in __________, Massachusetts.

• I put ___ fork down on the table.

• The woman walked across the street, checking for traffic over ___ shoulder.

• I went to the ocean to see the fish, turtles, seals, and _____.

• Overall, the value I got from the two hours watching it was the sum total of the
popcorn and the drink. The movie was ___.

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered
his destiny. Zuko left the ______.

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

20

What can we learn from reconstructing the input?

Slide adapted from John Hewitt

Pretraining can improve NLP applications by serving as parameter
initialization.

21

The pretraining + finetuning paradigm

Slide adapted from John Hewitt

22

3 types of LLMs:
encoders, encoder-decoders, decoders

Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude, BERT family, Flan-T5, Whisper
Llama, Mixtral HuBERT

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide adapted from Jurafsky and Martin

Decoder-only models

Also called:

• Causal LLMs

• Autoregressive LLMs

• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide adapted from Jurafsky and Martin

Encoders

Many varieties!
• Popular: Masked Language Models

(MLMs)
• BERT family
• Trained by predicting words from

surrounding words on both sides
• Are usually finetuned (trained on

supervised data) for classification
tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide adapted from Jurafsky and Martin

Encoder-Decoders

• Trained to map from one sequence
to another (sequence to sequence)

• Very popular for:
• machine translation: map from one

language to another

• speech recognition: map from
acoustics to words

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide adapted from Jurafsky and Martin

27

Decoder LLMs

Decoder-only models can handle many tasks

● Many tasks can be turned into tasks of
predicting words!

Slide adapted from Jurafsky and Martin

Conditional generation

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Slide adapted from Jurafsky and Martin

Generating
text
conditioned
on previous
text!

Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string:

The sentiment of the sentence "I like

Jackie Chan" is:

2. And see what word it thinks comes next:

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechoose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like

Slide adapted from Jurafsky and Martin

Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:

20 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

Prefix Text

Completion Text

Input

Embeddings

Transformer

Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Figure10.15 Autoregressive text completion with transformer-based large languagemodels.

word “negative” to seewhich ishigher:

P(positive|Thesentiment of thesentence “ I likeJackieChan” is:)

P(negative|Thesentiment of thesentence “ I likeJackieChan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to seewhich ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now seethat Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow thetext by atoken liketl;dr; this token isshort for something like

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to seewhich ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven thisprefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, andproduceaneffectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow thetext by atoken liketl;dr; thistoken isshort for something like

Slide adapted from Jurafsky and Martin

Summarization

Original

Summary

Slide adapted from Jurafsky and Martin

LLMs for summarization (using tl;dr)

Original Story

Generated Summary

… idea

Kyle

was born. Kyle

Waring

WaringonlyThe

…

will

Delimiter

will

U U U

tl;dr

LM Head

E E E E E E E E

…

Slide adapted from Jurafsky and Martin

● Take a corpus and ask the model to predict the next word!

● Train the model using gradient descent to minimize the error

● Same loss function as other neural models: cross-entropy loss

● Move the weights in the direction that assigns a higher probability to
the true next word

34

Pretraining decoder LLMs

Slide adapted from Jurafsky and Martin

35

Decoding: apply a “causal mask” for self-attention

Slide adapted from Tianxing He, John Hewitt

● To do auto-regressive LM, we need to apply
a “causal” mask to self-attention, forbidding
it from getting future context.

● At timestep t, we set 𝑎i = 0 for 𝑖 > 𝑡

● 2018’s GPT was a big success in
pretraining a decoder!

● Transformer decoder with 12 layers,
117M parameters.

● 768-dimensional hidden states,
3072-dimensional feed-forward
hidden layers.

● Trained on BooksCorpus: over 7000
unique books.
○ Contains long spans of

contiguous text, for learning
long-distance dependencies.

36

Generative Pretrained Transformer (GPT; Radford et al. 2018)

Slide adapted from John Hewitt, David Mortensen

● They are basically larger and larger
autoregressive transformer LMs trained
on larger and larger amounts of data

● They have shown amazing language
generation capability when you give it a
prompt (aka. prefix, the beginning of a
paragraph)

37

GPT-2, GPT-3, GPT-4 from OpenAI

Slide adapted from Tianxing He

38

Generation example from the GPT-2 model

A sample from GPT2 (with top-k sampling)
Slide credit: Tianxing He

39

Sampling for LLM generation

● This task of choosing a word to generate based on the model’s
probabilities is called decoding.

● The most common method for decoding in LLMs: sampling.

● Sampling from a model’s distribution over words:

○ choose random words according to their probability assigned by the model.

● After each token we’ll sample words to generate according to their
probability conditioned on our previous choices,

○ A transformer language model will give the probability

Decoding and Sampling

Slide adapted from Jurafsky and Martin

Random sampling

Slide adapted from Jurafsky and Martin

Random sampling doesn't work very well

● Even though random sampling mostly generate
sensible, high-probable words,

● There are many odd, low- probability words in
the tail of the distribution

● Each one is low- probability but added up they
constitute a large portion of the distribution

● So they get picked enough to generate weird
sentences

Slide adapted from Jurafsky and Martin

Factors in word sampling: quality and diversity

Emphasize high-probability words
+ quality: more accurate, coherent, and factual,
- diversity: boring, repetitive.

Emphasize middle-probability words
+ diversity: more creative, diverse,
- quality: less factual, incoherent

Slide adapted from Jurafsky and Martin

Top-k sampling:

1. Choose # of words k
2. For each word in the vocabulary V , use the language

model to compute the likelihood of this word given the
context p(wt |w<t)

3. Sort the words by likelihood, keep only the top k most
probable words.

4. Renormalize the scores of the k words to be a
legitimate probability distribution.

5. Randomly sample a word from within these remaining k
most-probable words according to its probability.

Slide adapted from Jurafsky and Martin

Temperature sampling

Reshape the distribution instead of truncating it
Intuition from thermodynamics,

• a system at high temperature is flexible and can
explore many possible states,

• a system at lower temperature is likely to explore a
subset of lower energy (better) states.

In low-temperature sampling, (τ ≤ 1) we smoothly
• increase the probability of the most probable words
• decrease the probability of the rare words.

Slide adapted from Jurafsky and Martin

Temperature sampling

Divide the output by a temperature parameter τ
before passing it through the softmax.

Instead of

We do

A lower τ pushes high-probability words higher and low probability
word lower due to the way softmax works

Slide adapted from Jurafsky and Martin

47

●Pretraining data and harms of LLMs

LLMs are mainly trained on the web

● Common crawl, snapshots of the entire web
produced by the non- profit Common Crawl with
billions of pages

● Colossal Clean Crawled Corpus (C4; Raffel et al.
2020), 156 billion tokens of English, filtered

● What's in it? Mostly patent text documents,
Wikipedia, and news sites

Slide adapted from Jurafsky and Martin

The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

dialog

Slide adapted from Jurafsky and Martin

Big idea

● Text contains enormous amounts of
knowledge

● Pretraining on lots of text with all that
knowledge is what gives language
models their ability to do so much

Slide adapted from Jurafsky and Martin

But there are problems with scraping from the web

● Copyright: much of the text in these datasets is
copyrighted
• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question

● Data consent
• Website owners can indicate they don't want their site

crawled

● Privacy:
• Websites can contain private IP addresses and phone

numbers

Slide adapted from Jurafsky and Martin

Hallucination

52

Harms from LLMs

Slide adapted from Jurafsky and Martin

Copyright

Privacy

Toxicity and abuse

53

Harms from LLMs

Slide adapted from Jurafsky and Martin

Misinformation

● Transformer-based language models pretrained on lots of text are called
large language models (LLMs)

● LLMs can have decoder-only, encoder-only, or encoder-decoder
architectures

● Decoder-only LLMs can cast many different NLP tasks as word prediction

● There are many different sampling approaches that balance diversity
and quality in text generation from LLMs

● Harms from LLMs include hallucinating false information, leaking private
information from training data, generating abuse and misinformation

54

Conclusion

Coding activity

55

● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’
server

56

Notebook: finetune GPT-2 on Shakespeare

● Open session17_gpt2_shakespeare.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main

	Slide 1
	Slide 2: Course logistics
	Slide 3: NLP talk by Anjalie Field 4:30pm today in SENSQ 5317
	Slide 4: Structure of this course
	Slide 5: Review: Describe self-attention in transformers
	Slide 6: Lecture overview: Transformers part 2, intro to LLMs
	Slide 7: Transformer input and output
	Slide 8: Token and Position Embeddings
	Slide 9: Token Embeddings
	Slide 10: Position Embeddings
	Slide 11: Each x is just the sum of word and position embeddings
	Slide 12: Language modeling head
	Slide 13: Language modeling head
	Slide 14: Language modeling head
	Slide 15: The final transformer language model
	Slide 16: Intro to large language models (LLMs): pretraining and finetuning
	Slide 17: Language models
	Slide 18: Large language models
	Slide 19: Pretraining whole models
	Slide 20: What can we learn from reconstructing the input?
	Slide 21: The pretraining + finetuning paradigm
	Slide 22: 3 types of LLMs: encoders, encoder-decoders, decoders
	Slide 23: Three architectures for large language models
	Slide 24: Decoder-only models
	Slide 25: Encoders
	Slide 26: Encoder-Decoders
	Slide 27: Decoder LLMs
	Slide 28: Decoder-only models can handle many tasks
	Slide 29: Conditional generation
	Slide 30: Many practical NLP tasks can be cast as word prediction!
	Slide 31: Framing lots of tasks as conditional generation
	Slide 32: Summarization
	Slide 33: LLMs for summarization (using tl;dr)
	Slide 34: Pretraining decoder LLMs
	Slide 35: Decoding: apply a “causal mask” for self-attention
	Slide 36: Generative Pretrained Transformer (GPT; Radford et al. 2018)
	Slide 37: GPT-2, GPT-3, GPT-4 from OpenAI
	Slide 38: Generation example from the GPT-2 model
	Slide 39: Sampling for LLM generation
	Slide 40: Decoding and Sampling
	Slide 41: Random sampling
	Slide 42: Random sampling doesn't work very well
	Slide 43: Factors in word sampling: quality and diversity
	Slide 44: Top-k sampling:
	Slide 45: Temperature sampling
	Slide 46: Temperature sampling
	Slide 47: Pretraining data and harms of LLMs
	Slide 48: LLMs are mainly trained on the web
	Slide 49: The Pile: a pretraining corpus
	Slide 50: Big idea
	Slide 51: But there are problems with scraping from the web
	Slide 52: Harms from LLMs
	Slide 53: Harms from LLMs
	Slide 54: Conclusion
	Slide 55: Coding activity
	Slide 56: Notebook: finetune GPT-2 on Shakespeare

