
1
Source: Ramsri Goutham

Session 13: BERT

Michael Miller Yoder

March 24, 2025

2

CS 1671/2071
Human Language Technologies

● Project progress report is due this Thu Mar 27. See the project
website for instructions

○ Part 1: Data statistics and exploratory data analysis (EDA)

○ Part 2: A result from baseline/initial approach

○ Part 3: Proposal on how to use LLMs for your task

○ Part 4: Open questions and challenges

● I will let you know when we have a class OpenAI API account to use
($150 total). In the meantime look into using Gemini free credits or
other LLMs

3

Course logistics

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report
https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report

● In-person exam will be next Wed Apr 2

○ One page of double-sided notes will be permitted

○ Review session is next Mon Mar 31 during class

● Homework 3 has been released and is due Apr 10

○ LLM prompting

○ Until class OpenAI API access has been set up, create
your own account and stay under the $5 free credit

4

Course logistics

● Notebook from last time: finetuning GPT-2 on Shakespeare plays

● Subword tokenization

● BERT and masked language modeling

● Finetuning BERT for classification and sequence labeling

● Notebook for this time: finetuning BERT for text classification

5

Lecture overview: BERT

Review: Describe encoder,
decoder, and encoder-
decoder architectures

6

Decoders Encoders Encoder-decoders

GPT, Claude, BERT family, Flan-T5, Whisper

Llama, Mixtral RoBERTa

Three architectures for large language modelsPretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide adapted from Jurafsky and Martin

● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’
server

8

Notebook from last time: finetune GPT-2 on Shakespeare

● Open session17_gpt2_shakespeare.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main

9

●Subword tokenization

● LLMs generally use subword tokenization
● E.g. byte pair encoding (BPE)

● Merges frequently seen sequences of characters together into tokens
● Repeat:

○ Choose the two symbols that are most frequently adjacent in the training
corpus (say 'A', 'B')

○ Add a new merged symbol 'AB' to the vocabulary

○ Replace every adjacent 'A' 'B' in the corpus with 'AB'.

○ Until k merges have been done.

● Allows them to generalize to unseen words, handle misspellings, novel
words

10

Subword tokenization

Slide adapted from Jurafsky & Martin

11

●Transformer encoder: BERT family

● So far, we’ve looked at (causal, left-to-right)
language model pretraining

● But what about tasks where we want to peek
at future tokens?

● Encoders can access bidirectional context
● Map sequences of input embeddings to

sequences of output embeddings that have
been contextualized using information from
the entire sequence

● No “masking” of future words in self-attention

12

Encoders

Slide adapted from John Hewitt, Jurafsky and Martin

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Bidirectional Self-Attention

a) A causal self-attention layer b) A bidirectional self-attention layer

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

Slide adapted from Jurafsky and Martin

● BERT (Devlin et al. 2019) is pretrained with 2 objectives
○ Masked language modeling
○ Next sentence prediction (not as important, covered in class)

14

Pretraining encoders: masked language modeling

15
Slide credit: David Mortensen

15% of the tokens are randomly chosen to be part of the masking .

Example: "Lunch was delicious", if delicious was randomly chosen:

Three possibilities:

1. 80%: Token is replaced with special token [MASK]

Lunch was delicious -> Lunch was [MASK]

2. 10%: Token is replaced with a random token (sampled from unigram prob)

Lunch was delicious -> Lunch was gasp

3. 10%: Token is unchanged

Lunch was delicious -> Lunch was delicious

MLM training in BERT

Slide adapted from Jurafsky and Martin

In detail

LM Head with Softmax

over Vocabulary

So [mask] and [mask] for

long thanks

CE Loss

all apricot fish

the

Token +
Positional

Embeddings

So long and thanks for all fishthe

Bidirectional Transformer Encoder

+

p1

+ + + + + + +

p2 p3 p4 p5 p6 p7 p8

z1 z2 z3 z4 z5 z6 z7 z8

Slide adapted from Jurafsky and Martin

Details about BERT

• Two models were released:
• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:
• BooksCorpus (800 million words)
• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.
• BERT was pretrained with 64 TPU chips for a total of 4 days.

(TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU
• “Pretrain once, finetune many times.”

18

BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt

19

Finetuning BERT for classification and
sequence labeling

Finetuning for classification

[CLS] entirely predictable and lacks energy

Bidirectional Transformer Encoder

hCLS

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

sentiment

classification

head W
C

y

Slide adapted from Jurafsky and Martin

● Assign a label from a small fixed set of labels to each token in the
sequence.

• Named entity recognition

• Part of speech tagging
• Assign a part of speech (like NOUN, VERB, or ADJECTIVE) to every word in a sentence

• Labels depend not just on the word being classified, but labels of
surrounding words

• E.g. “States” is more likely to be part of a named entity if it follows the word
“United”

Fine-tuning for sequence labeling (new task!)

Slide adapted from Jurafsky and Martin

● A named entity is anything that can be referred to with a
proper name: a person, a location, an organization

● Named entity recognition (NER): find spans of text that
constitute proper names and tag the type of the entity

Named Entity Recognition

Slide adapted from Jurafsky and Martin

Named Entity Recognition

Slide adapted from Jurafsky and Martin

● A method that lets us turn a
segmentation task (finding
boundaries of entities) into a
classification task

[PER Jane Villanueva] of [ORG United
Airlines Holding] discussed the [LOC
Chicago] route.

24

BIO tagging [Ramshaw and Marcus 1995]

Slide adapted from Jurafsky & Martin

Sequence labeling

[CLS] Jane Villanueva of United Airlines

Bidirectional Transformer Encoder

B-PER I-PER O B-ORG I-ORG

Holding discussed

I-ORG O

W
K

NER

head

hi

argmax

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

W
K

W
K

W
K

W
K

W
K

W
K

yi

Slide adapted from Jurafsky and Martin

● LLMs use subword tokenization like BPE to learn to recognize parts of words
(subword tokens). This enables them to handle words they haven’t seen before

● BERT is an encoder transformer model that produces an output embedding for
every input token

● BERT is pretrained on the task of masked language modeling, learning to predict
masked words in the middle of sentences

● BERT is often finetuned for:

● Classification

● Sequence labeling, which are tasks like named entity recognition where a label is
predicted for every word

26

Conclusion

27

Coding activity: finetune BERT for text
classification

● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’
server

28

Notebook for this class: finetune BERT for politeness
classification

● Open session18_bert_politeness.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main

	Slide 1
	Slide 2
	Slide 3: Course logistics
	Slide 4: Course logistics
	Slide 5: Lecture overview: BERT
	Slide 6: Review: Describe encoder, decoder, and encoder-decoder architectures
	Slide 7: Three architectures for large language models
	Slide 8: Notebook from last time: finetune GPT-2 on Shakespeare
	Slide 9: Subword tokenization
	Slide 10: Subword tokenization
	Slide 11: Transformer encoder: BERT family
	Slide 12: Encoders
	Slide 13: Bidirectional Self-Attention
	Slide 14: Pretraining encoders: masked language modeling
	Slide 15
	Slide 16: MLM training in BERT
	Slide 17: In detail
	Slide 18: BERT: Bidirectional Encoder Representations from Transformers
	Slide 19: Finetuning BERT for classification and sequence labeling
	Slide 20: Finetuning for classification
	Slide 21: Fine-tuning for sequence labeling (new task!)
	Slide 22: Named Entity Recognition
	Slide 23: Named Entity Recognition
	Slide 24: BIO tagging [Ramshaw and Marcus 1995]
	Slide 25: Sequence labeling
	Slide 26: Conclusion
	Slide 27: Coding activity: finetune BERT for text classification
	Slide 28: Notebook for this class: finetune BERT for politeness classification

