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CS 1671/2071
Human Language Technologies



● Project progress report is due this Thu Mar 27. See the project 
website for instructions

○ Part 1: Data statistics and exploratory data analysis (EDA)

○ Part 2: A result from baseline/initial approach

○ Part 3: Proposal on how to use LLMs for your task

○ Part 4: Open questions and challenges

● I will let you know when we have a class OpenAI API account to use 
($150 total). In the meantime look into using Gemini free credits or 
other LLMs
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Course logistics

https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report
https://michaelmilleryoder.github.io/cs1671_spring2025/project.html#progress-report


● In-person exam will be next Wed Apr 2

○ One page of double-sided notes will be permitted

○ Review session is next Mon Mar 31 during class

● Homework 3 has been released and is due Apr 10

○ LLM prompting

○ Until class OpenAI API access has been set up, create 
your own account and stay under the $5 free credit

4

Course logistics



● Notebook from last time: finetuning GPT-2 on Shakespeare plays

● Subword tokenization

● BERT and masked language modeling

● Finetuning BERT for classification and sequence labeling

● Notebook for this time: finetuning BERT for text classification
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Lecture overview: BERT



Review: Describe encoder, 
decoder, and encoder-
decoder architectures
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Decoders Encoders Encoder-decoders

GPT, Claude,       BERT family, Flan-T5, Whisper

Llama, Mixtral RoBERTa

Three architectures for large language modelsPretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Slide adapted from Jurafsky and Martin



● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’ 
server
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Notebook from last time: finetune GPT-2 on Shakespeare

● Open session17_gpt2_shakespeare.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main
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●Subword tokenization



● LLMs generally use subword tokenization
● E.g. byte pair encoding (BPE)

● Merges frequently seen sequences of characters together into tokens
● Repeat:

○ Choose the two symbols that are most frequently adjacent in the training 
corpus (say 'A', 'B') 

○ Add a new merged symbol 'AB' to the vocabulary

○ Replace every adjacent 'A' 'B' in the corpus with 'AB'. 

○ Until k merges have been done.

● Allows them to generalize to unseen words, handle misspellings, novel 
words
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Subword tokenization

Slide adapted from Jurafsky & Martin
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●Transformer encoder: BERT family



● So far, we’ve looked at (causal, left-to-right) 
language model pretraining

● But what about tasks where we want to peek 
at future tokens?

● Encoders can access bidirectional context
● Map sequences of input embeddings to 

sequences of output embeddings that have 
been contextualized using information from 
the entire sequence

● No “masking” of future words in self-attention
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Encoders

Slide adapted from John Hewitt, Jurafsky and Martin

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Bidirectional Self-Attention

a) A causal self-attention layer b) A bidirectional self-attention layer

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

Slide adapted from Jurafsky and Martin



● BERT (Devlin et al. 2019) is pretrained with 2 objectives
○ Masked language modeling
○ Next sentence prediction (not as important, covered in class)

14

Pretraining encoders: masked language modeling
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Slide credit: David Mortensen



15% of the tokens are randomly chosen to be part of the masking .

Example: "Lunch was delicious", if delicious was randomly chosen:

Three possibilities:

1. 80%: Token is replaced with special token [MASK]

Lunch was delicious -> Lunch was [MASK]

2. 10%: Token is replaced with a random token (sampled from unigram prob)

Lunch was delicious -> Lunch was gasp

3. 10%: Token is unchanged

Lunch was delicious -> Lunch was delicious

MLM training in BERT

Slide adapted from Jurafsky and Martin



In detail

LM Head with Softmax 

over Vocabulary

So [mask] and [mask] for 

long thanks

CE Loss

all apricot fish

the

Token +
Positional 

Embeddings

So long and thanks for all fishthe

Bidirectional Transformer Encoder

+

p1

+ + + + + + +

p2 p3 p4 p5 p6 p7 p8

z1 z2 z3 z4 z5 z6 z7 z8

Slide adapted from Jurafsky and Martin



Details about BERT

• Two models were released:
• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:
• BooksCorpus (800 million words)
• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.
• BERT was pretrained with 64 TPU chips for a total of 4 days.

(TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU
• “Pretrain once, finetune many times.”
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BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt
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Finetuning BERT for classification and 
sequence labeling



Finetuning for classification

[CLS] entirely predictable and lacks energy

Bidirectional Transformer Encoder
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Slide adapted from Jurafsky and Martin



● Assign a label from a small fixed set of labels to each token in the 
sequence. 

• Named entity recognition

• Part of speech tagging
• Assign a part of speech (like NOUN, VERB, or ADJECTIVE) to every word in a sentence

• Labels depend not just on the word being classified, but labels of 
surrounding words

• E.g. “States” is more likely to be part of a named entity if it follows the word 
“United”

Fine-tuning for sequence labeling (new task!)

Slide adapted from Jurafsky and Martin



● A named entity is anything that can be referred to with a 
proper name: a person, a location, an organization

● Named entity recognition (NER): find spans of text that 
constitute proper names and tag the type of the entity 

Named Entity Recognition

Slide adapted from Jurafsky and Martin



Named Entity Recognition

Slide adapted from Jurafsky and Martin



● A method that lets us turn a 
segmentation task (finding 
boundaries of entities) into a 
classification task

[PER Jane Villanueva] of [ORG United 
Airlines Holding] discussed the [LOC 
Chicago ] route. 

24

BIO tagging [Ramshaw and Marcus 1995]

Slide adapted from Jurafsky & Martin



Sequence labeling

[CLS] Jane Villanueva of United Airlines

Bidirectional Transformer Encoder
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Slide adapted from Jurafsky and Martin



● LLMs use subword tokenization like BPE to learn to recognize parts of words 
(subword tokens). This enables them to handle words they haven’t seen before

● BERT is an encoder transformer model that produces an output embedding for 
every input token

● BERT is pretrained on the task of masked language modeling, learning to predict 
masked words in the middle of sentences

● BERT is often finetuned for:

● Classification

● Sequence labeling, which are tasks like named entity recognition where a label is 
predicted for every word
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Conclusion
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Coding activity: finetune BERT for text 
classification



● Click on this nbgitpuller link or find the link on the course website

● Important difference from normal: Open a ‘Teach – 1 gpu, 3 hours’ 
server
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Notebook for this class: finetune BERT for politeness 
classification

● Open session18_bert_politeness.ipynb

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_jupyterhub%2F&branch=main
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