

Why was BERT way ahead of its time?

Because it was a masked language model even during pre-covid days!

CS 1671/2071 Human Language Technologies

Session 13: BERT

Michael Miller Yoder

March 24, 2025

School of Computing and Information

Course logistics

- Project progress report is **due this Thu Mar 27**. See the <u>project</u> <u>website</u> for instructions
 - **Part 1:** Data statistics and exploratory data analysis (EDA)
 - **Part 2:** A result from baseline/initial approach
 - **Part 3:** Proposal on how to use LLMs for your task
 - **Part 4:** Open questions and challenges
- I will let you know when we have a class OpenAI API account to use (\$150 total). In the meantime look into using Gemini free credits or other LLMs

Course logistics

- In-person exam will be **next Wed Apr 2**
 - One page of double-sided notes will be permitted
 - Review session is next Mon Mar 31 during class
- Homework 3 has been released and is **due Apr 10**
 - LLM prompting
 - Until class OpenAI API access has been set up, create your own account and stay under the \$5 free credit

Lecture overview: BERT

- Notebook from last time: finetuning GPT-2 on Shakespeare plays
- Subword tokenization
- BERT and masked language modeling
- Finetuning BERT for classification and sequence labeling
- Notebook for this time: finetuning BERT for text classification

Review: Describe encoder, decoder, and encoderdecoder architectures

Three architectures for large language models

Encoders

Encoder-decoders

GPT, Claude, B Llama, Mixtral

BERT family,

Flan-T5, Whisper

RoBERTa

Notebook from last time: finetune GPT-2 on Shakespeare

- <u>Click on this nbgitpuller link</u> or find the link on the course website
- Important difference from normal: Open a 'Teach 1 gpu, 3 hours' server

Server Options

Select a job profile:	
Teach - 6 cores, 3 hours	~
Teach - 6 cores, 3 hours	
Teach - 1 gpu, 3 hours	
A100 - 1 gpu, 3 hours	
SMP - 4 cores, 3 hours	

• Open session17_gpt2_shakespeare.ipynb

Subword tokenization

Subword tokenization

- LLMs generally use **subword tokenization**
- E.g. byte pair encoding (BPE)
- Merges frequently seen sequences of characters together into tokens
- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
 - Until *k* merges have been done.
- Allows them to generalize to unseen words, handle misspellings, novel words

Transformer encoder: BERT family

Encoders

- So far, we've looked at (causal, left-to-right) language model pretraining
- But what about tasks where we want to peek at future tokens?
- Encoders can access bidirectional context
- Map sequences of input embeddings to sequences of output embeddings that have been contextualized using information from the entire sequence

Bidirectional Self-Attention

a) A causal self-attention layer

a₁ attention a

b) A bidirectional self-attention layer

Pretraining encoders: masked language modeling

- BERT (Devlin et al. 2019) is pretrained with 2 objectives
 - Masked language modeling
 - Next sentence prediction (not as important, covered in class)

The Cloze Task

- The cloze task comes from psycholinguistics (the branch of linguistics and cognitive science that uses experimental methods to study how language works in human brains).
- It is a fill-in-the-blank task:

He drove the yellow _____ into the front of our house.

- Subjects are presented with these frames and asked to fill in the missing words
- This allows experimenters to assess what a speaker understands about grammar, semantics, etc.
- According to the original BERT paper, this task provided the inspiration for BERT's masked language modeling (MLM) training task.
- But compare various kinds of denoising algorithms.

15% of the tokens are randomly chosen to be part of the masking . Example: "Lunch was **delicious**", if delicious was randomly chosen: Three possibilities:

1. 80%: Token is replaced with special token [MASK]

Lunch was **delicious ->** Lunch was **[MASK]**

- 10%: Token is replaced with a random token (sampled from unigram prob)
 Lunch was delicious -> Lunch was gasp
- 3. 10%: Token is unchanged

Lunch was **delicious ->** Lunch was **delicious**

In detail

Details about BERT

- Two models were released:
 - BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
 - BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
- Trained on:
 - BooksCorpus (800 million words)
 - English Wikipedia (2,500 million words)
- Pretraining is expensive and impractical on a single GPU.
 - BERT was pretrained with 64 TPU chips for a total of 4 days. (TPUs are special tensor operation acceleration hardware)
- Finetuning is practical and common on a single GPU
 - "Pretrain once, finetune many times."

Finetuning BERT for classification and sequence labeling

Finetuning for classification

Fine-tuning for sequence labeling (new task!)

- Assign a label from a small fixed set of labels to each token in the sequence.
 - Named entity recognition
 - Part of speech tagging
 - Assign a part of speech (like NOUN, VERB, or ADJECTIVE) to every word in a sentence
- Labels depend not just on the word being classified, but labels of surrounding words
 - E.g. "States" is more likely to be part of a named entity if it follows the word "United"

Named Entity Recognition

- A **named entity** is anything that can be referred to with a proper name: a person, a location, an organization
- Named entity recognition (NER): find spans of text that constitute proper names and tag the type of the entity

Туре	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.

Citing high fuel prices, [$_{ORG}$ United Airlines] said [$_{TIME}$ Friday] it has increased fares by [$_{MONEY}$ \$6] per round trip on flights to some cities also served by lower-cost carriers. [$_{ORG}$ American Airlines], a unit of [$_{ORG}$ AMR Corp.], immediately matched the move, spokesman [$_{PER}$ Tim Wagner] said. [$_{ORG}$ United], a unit of [$_{ORG}$ UAL Corp.], said the increase took effect [$_{TIME}$ Thursday] and applies to most routes where it competes against discount carriers, such as [$_{LOC}$ Chicago] to [$_{LOC}$ Dallas] and [$_{LOC}$ Denver] to [$_{LOC}$ San Francisco].

BIO tagging [Ramshaw and Marcus 1995]

 A method that lets us turn a segmentation task (finding boundaries of entities) into a classification task

[PER Jane Villanueva] of [ORG United Airlines Holding] discussed the [LOC Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	0
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	0
the	0
Chicago	B-LOC
route	0
	0

Sequence labeling

Slide adapted from Jurafsky and Martin

Conclusion

- LLMs use subword tokenization like BPE to learn to recognize parts of words (subword tokens). This enables them to handle words they haven't seen before
- BERT is an encoder transformer model that produces an output embedding for every input token
- BERT is pretrained on the task of masked language modeling, learning to predict masked words in the middle of sentences
- BERT is often finetuned for:
 - Classification
 - Sequence labeling, which are tasks like named entity recognition where a label is predicted for every word

Coding activity: finetune BERT for text classification

Notebook for this class: finetune BERT for politeness classification

- <u>Click on this nbgitpuller link</u> or find the link on the course website
- Important difference from normal: Open a 'Teach 1 gpu, 3 hours' server

Server Options

Sel	ect a job profile:	
Т	each - 6 cores, 3 hours	~
Te	each - 6 cores, 3 hours	
Te	each - 1 gpu, 3 hours	
A	100 - 1 gpu, 3 hours	
S	MP - 4 cores, 3 hours	

• Open session18_bert_politeness.ipynb