
1https://xkcd.com/208/

https://xkcd.com/208/

CS 1671 / CS 2071 / ISSP 2071
Human Language Technologies

Session 4: Words, tokens and preprocessing

Michael Miller Yoder

January 26, 2026

2

● First in-class quiz is this Wed Jan 28

○ Covers readings from all the sessions up to that point

○ Looking over the reading is a great way to prepare

○ Session 4: J+M 2-2.6, 2.8, 2.10

○ Can cover content assigned in reading that is not discussed in class

○ Content from other sessions will not be included

● ~4 questions

● Conceptual, not programming

● Lowest quiz score in the course will be dropped

● Quizzes are 15% of your course grade total
3

Course logistics: quiz

● In class on Canvas, 10 minutes to complete it (1-1:10pm)

● Allowed resources

○ Textbook

○ Your notes (on a computer or physical)

○ Course slides and website

● Resources not allowed

○ Generative AI

○ Internet searches

4

Course logistics: quiz

● Homework 1 will be released soon
(tomorrow or Wed). Will be due Feb 12

● Please remind me of your name before
asking or answering a question

5

Course logistics

● Computational linguistics group on campus

● Practice NLP skills related to this class with fun tutorials and guest
speakers (with food, too!)

● Next meeting is Wed Jan 28, 6-7:15pm at CL 2818 (linguistics department
conference room)

○ Meeting topic: text analysis of NLP conference proceedings (how much are
dominated by LLMs? What other areas are prevalent?)

● Contact Na-Rae Han, naraehan@pitt.edu to get on their mailing list
6

• Words and corpora

• Morphemes

• Tokenization and subword tokenization

• Regular expressions

• Other text preprocessing

• Coding activity: preprocessing Airbnb listings

7

Overview: Words, tokens and preprocessing

NLP terminology: words and corpora

8

they lay back on the San Francisco grass and looked at the stars
and their

● How many?
○ 15 tokens (or 14 if you count "San Francisco" as one)
○ 13 types (or 12) (or 11?)

● Type: a unique word in the vocabulary
● Token: an instance of a word type in running text
● Lemma: same stem, part of speech, rough word sense

○ cat and cats = same lemma
● Wordform: the full inflected surface form

○ cat and cats = different wordforms
9

How many words in this phrase?

Slide adapted from Jurafsky & Martin

Corpus: a (machine-readable) collection of texts

N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary

Tokens = N Types = |V|

Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million
10

How many words in a corpus?

Slide adapted from Jurafsky & Martin

● Texts don't appear out of nowhere!
● Language: 7097 languages in the world
● Variety, like African American Language varieties.

○ AAE Twitter posts might include forms like "iont" (I don't)
● Code switching, e.g., Spanish/English, Hindi/English:

Por primera vez veo a @username actually being helpful! It was beautiful:)

[For the first time I get to see @username actually being helpful! it was beautiful:)]

dost tha or ra- hega ... dont wory ... but dherya rakhe

[“he was and will remain a friend ... don’t worry ... but have faith”]

● Genre: newswire, fiction, scientific articles, Wikipedia
● Author Demographics: writer's age, gender, ethnicity, SES
● Corpus datasheets [Bender & Friedman 2018, Gebru+ 2020] ask about

this information 11

Corpora vary along dimensions like

Slide adapted from Jurafsky & Martin

12

Morphemes

● Morphemes: small meaningful units that make up words
○ Roots: The core meaning-bearing units
○ Affixes: Parts that adhere to roots

● Affixes can add grammatical meaning (inflections, 2nd column) or
modify semantic meaning (derivations, 3rd column)

13

Morphemes

Slide adapted from Jurafsky & Martin,
David Mortensen

○ e.g., the Turkish word:
Uygarlastiramadiklarimizdanmissinizcasina

'(behaving) as if you are among those whom we could not civilize'

Uygar 'civilized' + las 'become'
+ tir 'cause' + ama 'not able’
+ dik 'past’ + lar ‘plural’
+ imiz ‘1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

14

Dealing with complex morphology is necessary for many languages

Slide adapted from Jurafsky & Martin

15

Tokenization

Why tokenize?

● Using a deterministic series of tokens
means systems can be compared equally
○ Systems agree on the length of a string

● Eliminates the problem of unknown words

Slide adapted from Jurafsky & Martin
16

● A very simple way to tokenize

● For languages that use space characters between words

○ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

● Segment off a token between instances of spaces

17

Space-based tokenization

Slide adapted from Jurafsky & Martin

● Can't just blindly remove punctuation:
○ m.p.h., Ph.D., AT&T, cap’n
○ prices ($45.55)
○ dates (01/02/06)
○ URLs (http://www.pitt.edu)
○ hashtags (#nlproc)
○ email addresses (someone@cs.colorado.edu)

● Clitic: a word that doesn't stand on its own
○ "are" in we're, French "je" in j'ai, "le" in l'honneur

● When should multiword expressions (MWE) be words?
○ New York, rock ’n’ roll

18

Issues in Tokenization

Slide adapted from Jurafsky & Martin

● Many languages (like Chinese, Japanese, Thai) don't use spaces to
separate words!

● How do we decide where the token boundaries should be?

19

Tokenization in languages without spaces between words

Slide adapted from Jurafsky & Martin

● Chinese words are composed of characters called "hanzi" (or
sometimes just "zi")

● Each one represents a meaning unit called a morpheme
● Each word has on average 2.4 of them.
● But deciding what counts as a word is complex and not agreed upon.

20

Word tokenization in Chinese

Slide adapted from Jurafsky & Martin

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

21

How to do word tokenization in Chinese?

Slide adapted from Jurafsky & Martin

● In Chinese NLP it's common to just treat each character (zi) as a token.
○ So the segmentation step is very simple

● In other languages (like Thai and Japanese), more complex word
segmentation is required.
○ The standard algorithms are neural sequence models trained by

supervised machine learning.

22

Word tokenization / segmentation

Slide adapted from Jurafsky & Martin

23

Subword tokenization & BPE

● Use the data to tell us how to tokenize.
● Subword tokenization (because tokens can be parts of words as well

as whole words)
● Many modern neural NLP systems (like LLMs) use this to handle

unknown words
● Algorithms include Byte Pair Encoding (BPE), WordPiece, etc

● 2 parts:
○ A token learner that takes a raw training corpus and induces a vocabulary

(a set of tokens).
○ A token segmenter that takes a raw test sentence and tokenizes it

according to that vocabulary

24

Another option for text tokenization

Slide adapted from Jurafsky & Martin

Byte Pair Encoding (BPE) token learner

Start with all characters
Repeat:

○ Choose most frequent
neighboring pair ('A', 'B')

○ Add a new merged symbol
('AB') to the vocabulary

○ Replace every 'A' 'B' in the
corpus with 'AB'.

Until k merges

Vocabulary
[A, B, C, D, E]
[A, B, C, D, E, AB]
[A, B, C, D, E, AB, CAB]

Corpus
A B D C A B E C A B
AB D C AB E C AB
AB D CAB E CAB

Iteratively merge frequent neighboring tokens to create longer tokens.

25
Slide adapted from Jurafsky & Martin

Original (very fascinating) corpus:

low low low low low lowest lowest newer newer newer newer newer
newer wider wider wider new new

Split on whitespace, add end-of-word tokens _

26

BPE token learner

Slide adapted from Jurafsky & Martin

● Merge e r to er

27

BPE token learner

Slide adapted from Jurafsky & Martin

● Merge er _ to er_
● Merge n e to ne

The next merges are:

28

BPE token learner

Slide adapted from Jurafsky & Martin

● On the test data, run each merge learned from the training data:

○ Greedily, in the order we learned them

● So merge every e r to er, then merge er _ to er_, etc.

● Result:

○ Test set "n e w e r _" would be tokenized as a full word

○ Test set "l o w e r _" would be two tokens: "low er_"

29

BPE token segmenter algorithm

Slide adapted from Jurafsky & Martin

30

Regular expressions (regex)

● A formal language for specifying text strings

● How can we search for any of these?

○ woodchuck
○ woodchucks
○ Woodchuck
○ Woodchucks

Regular expressions

31Slide adapted from Jurafsky & Martin

● Letters inside square brackets []

● Ranges [A-Z] [a-z] [0-9]
● Negations [^A-Z]

○ Carat means negation only when first in []
● Sequence disjunctions with pipe |

○ groundhog|woodchuck

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

32

Regular expressions: Disjunctions (OR)

Slide adapted from Jurafsky & Martin

Stephen C Kleene

Pattern Matches

oo*h 0 or more
of previous
char

oh ooh oooh ooooh

o+h 1 or more
of previous
char

oh ooh oooh ooooh

beg.n Any char begin begun begun
beg3n

33

Regular expression wildcards: *+.

Slide adapted from Jurafsky & Martin

● Find all instances of the word “the” in a text.
the

● Misses capitalized examples

[tT]he

● Incorrectly returns "other" or "theology"

[^a-zA-Z][tT]he[^a-zA-Z]

34

Regular expression example

Slide adapted from Jurafsky & Martin

● Early NLP system that imitated a Rogerian psychotherapist
[Weizenbaum 1966]

● Uses pattern matching to match phrases

“I need X”

● and translates them into, e.g.

“What would it mean to you if you got X?

35

Simple Application: ELIZA

Slide adapted from Jurafsky & Martin

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

36

Simple Application: ELIZA

Slide adapted from Jurafsky & Martin

.* I’M (depressed|sad) .* → I AM SORRY TO HEAR YOU ARE \1

.* all .* → IN WHAT WAY?

.* always .* → CAN YOU THINK OF A SPECIFIC EXAMPLE?/

37

How ELIZA works

Slide adapted from Jurafsky & Martin

● Regular expressions play a surprisingly large role in NLP

○ Sophisticated sequences of regular expressions are often the first
model for any text processing text

● For hard tasks, we use machine learning classifiers

○ But regular expressions are still used for pre-processing, or used
to extract features for the classifiers

38

Regular expressions summary

Slide adapted from Jurafsky & Martin

39

Other text preprocessing (normalization)

● Applications like information
retrieval: reduce all letters to
lowercase
○ Since users tend to use

lowercase
○ Possible exception: upper case in

mid-sentence?
■ e.g., General Motors
■ Fed vs. fed
■ SAIL vs. sail

● For sentiment analysis, MT,
information extraction
○ Case is helpful (US versus us is

important)

40

Case folding (lowercasing)

Slide adapted from Jurafsky & Martin

Lemmatization: reducing words to their lemmas: their shared root, dictionary
headword form:
○ am, are, is → be
○ car, cars, car's, cars' → car
○ Spanish quiero (‘I want’), quieres (‘you want’)

→ querer ‘want'
○ He is reading detective stories

→ He be read detective story
Stemming: reducing words to their “stems”, chopping off affixes crudely. You
aren’t left with true words, but is fast to run.
○ This was an accurate, complete copy of the map

→ Thi was an accur complet copi of the map

41

Lemmatization and stemming

Slide adapted from Jurafsky & Martin

● Do we want to keep "function words" like the, of, and, I, you, etc?

● Sometimes no (information retrieval)

● Sometimes yes (authorship attribution)

42

Stopword removal

● Word types are unique words
● Morphemes are the smallest meaning-bearing units within words
● Unicode represent characters for many languages and scripts in

code points, which can be encoded into bytes with UTF-8
● Tokenization: splitting texts into sequences of words

○ Subword tokenization finds tokens based on frequencies of sequences
of characters in data

● Regular expressions match flexible sequences of characters
● Lemmatization: normalizing words to their dictionary roots
● Stopwords are function words like “the”, “a”, “and”, “of”, etc that are

often ignored in NLP applications
43

Conclusion: Words, tokens, and preprocessing

44

Coding activity:
Preprocessing Airbnb listings

1. Go to this nbgitpuller link (also available on course website)

2. Log in with your Pitt username if necessary

3. Start a server with TEACH – 6 CPUs, 48 GB

4. Load custom environment at /ix1/cs1671-2026s/class_env

5. This should pull the cs1671_spring2026_jupyterhub folder into your
JupyterLab

6. Open session4_preprocessing.ipynb

45

Load in-class notebook

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_spring2026_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_spring2026_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_spring2026_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_spring2026_jupyterhub%2F&branch=main

	Slide 1
	Slide 2: CS 1671 / CS 2071 / ISSP 2071 Human Language Technologies
	Slide 3: Course logistics: quiz
	Slide 4: Course logistics: quiz
	Slide 5: Course logistics
	Slide 6
	Slide 7
	Slide 8: NLP terminology: words and corpora
	Slide 9: How many words in this phrase?
	Slide 10: How many words in a corpus?
	Slide 11: Corpora vary along dimensions like
	Slide 12: Morphemes
	Slide 13: Morphemes
	Slide 14: Dealing with complex morphology is necessary for many languages
	Slide 15: Tokenization
	Slide 16: Why tokenize?
	Slide 17: Space-based tokenization
	Slide 18: Issues in Tokenization
	Slide 19: Tokenization in languages without spaces between words
	Slide 20: Word tokenization in Chinese
	Slide 21: How to do word tokenization in Chinese?
	Slide 22: Word tokenization / segmentation
	Slide 23: Subword tokenization & BPE
	Slide 24: Another option for text tokenization
	Slide 25: Byte Pair Encoding (BPE) token learner
	Slide 26: BPE token learner
	Slide 27: BPE token learner
	Slide 28: BPE token learner
	Slide 29: BPE token segmenter algorithm
	Slide 30: Regular expressions (regex)
	Slide 31: Regular expressions
	Slide 32: Regular expressions: Disjunctions (OR)
	Slide 33: Regular expression wildcards: *+.
	Slide 34: Regular expression example
	Slide 35: Simple Application: ELIZA
	Slide 36: Simple Application: ELIZA
	Slide 37: How ELIZA works
	Slide 38: Regular expressions summary
	Slide 39: Other text preprocessing (normalization)
	Slide 40: Case folding (lowercasing)
	Slide 41: Lemmatization and stemming
	Slide 42: Stopword removal
	Slide 43
	Slide 44: Coding activity: Preprocessing Airbnb listings
	Slide 45: Load in-class notebook

