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CS 1671 / CS 2071 / ISSP 2071
Human Language Technologies



● Next in-class quiz is next class session, Mon Feb 9

○ Session 6: J+M 5.3-5.4, 11.1.1

○ Session 7 (today): J+M 3-3.6.2, 3.8 

● Conceptual, not programming

● Lowest quiz score in the course will be dropped

● If you won’t be in class, let me know and I can 
accommodate
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Course logistics: quiz



● Project idea form to submit project ideas is due tomorrow, Thu Feb 5

● Take a look at the example projects on the project website. You can 
submit one or more of those for the form, or submit your own idea!

● Have a potential project idea that involves deriving insight from a dataset 
of text, or building an NLP system that can do something with text? You 
can submit it!

○ Ideas do not need to be well-formed

○ Ideas that have data already available are more realistic

● You will later choose from an anonymized list of project ideas on Project 
Match Day, Feb 11
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Course logistics: project

https://forms.cloud.microsoft/r/eAqzLSk0yd
https://forms.cloud.microsoft/r/eAqzLSk0yd
https://michaelmilleryoder.github.io/cs1671_spring2026/project.html


● Homework 1 has been released. Is due next 
Thu Feb 12 at 11:59pm

● Homework assignments are programming-
based

● Homework 1 covers text processing and 
regular expressions in Python
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Course logistics: homework

https://michaelmilleryoder.github.io/cs1671_spring2026/hw1.html
https://michaelmilleryoder.github.io/cs1671_spring2026/hw1.html
https://michaelmilleryoder.github.io/cs1671_spring2026/hw1.html
https://michaelmilleryoder.github.io/cs1671_spring2026/hw1.html


● I’ve created a Discord server for the class for in-class questions 
and discussion of assessments (homework, projects, etc)

● Invite link: https://discord.gg/AbVVBm9C 

○ If it has expired, reach out to Michael

● Please change your server nickname to match your full name as 
it appears on Canvas (including your first and last name)

○ To do this, right click on the server icon in the server list, then 
click "Edit Per-server Profile". Then edit the "Server Nickname" 
field.
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Course logistics: Discord server

https://discord.gg/AbVVBm9C


● Coding activity from last time: clickbait n-gram document 
representations

● Language modeling

● N-gram language models

● Sampling sentences from n-gram language models

● Estimating n-gram probabilities

● Perplexity and evaluating language models

● Handling zeros in n-gram language models
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Overview: N-gram language models
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Coding activity: 
clickbait n-gram document representations



1. Go to this nbgitpuller link (also available on course website)

2. Log in with your Pitt username if necessary

3. Start a server with TEACH – 6 CPUs, 48 GB

4. Load custom environment at /ix1/cs1671-2026s/class_env

1. If you have multiple accounts on the CRCD, put in cs1671-2026s for 
Account

5. This should pull the cs1671_spring2026_jupyterhub folder into your 
JupyterLab

6. Open session6_clickbait_ngrams.ipynb
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N-gram document representations on JupyterHub

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_spring2026_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_spring2026_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs1671_spring2026_jupyterhub&urlpath=lab%2Ftree%2Fcs1671_spring2026_jupyterhub%2F&branch=main
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Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

language modeling
text classification
sequence labeling

NLP applications and ethics machine translation, chatbots, information retrieval, biasMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Prerequisite skills for NLP text normalization, linear alg., prob., machine learning
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Introduction to language models



12
Slide credit: David Mortensen
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Slide credit: David 
Mortensen
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Slide credit: David Mortensen



15Slide credit: David Mortensen



16
Slide credit: David Mortensen
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N-gram language models
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Slide credit: David Mortensen
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Slide credit: David Mortensen



20Slide credit: David Mortensen

The chain rule to compute the joint probability of words in a 
sentence



21Slide credit: David Mortensen

But this can’t be a valid estimate! “now is the winter of 
our” is going to very rare in corpora. It isn’t going to be 
a good estimate of its true probability.
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Slide credit: David Mortensen

Is P(discontent|now is the winter of our) really easier to 
compute than P(now is the winter of our discontent)?

How can the chain rule help us? We can cheat.



23Slide credit: 
David Mortensen

● We only get an estimate this way, but we can obtain it by only counting 
simpler things: “our discontent”, “discontent”, “of our”, etc

● N-gram language modeling is a generalization of this observation 
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This assumption is the Markov assumption

Slide credit: David Mortensen
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Sampling sentences from 
language models



● Choose a random bigram 
(<s>, w) according to its 
probability

● Now choose a random 
bigram (w, x) according to its 
probability

● And so on until we choose 
</s>

● Then string the words 
together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food
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The Shannon Visualization Method

Slide adapted from Jurafsky & Martin



27

Unigram model

Slide credit: David Mortensen
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Bigram model

Slide credit: David Mortensen



29Slide credit: David Mortensen



30Slide credit: David Mortensen

N-gram models have trouble with long-range dependencies



31Slide credit: David Mortensen
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Estimating n-gram probabilities
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Estimating bigram probabilities with the maximum likelihood 
estimate (MLE)

Slide credit: David Mortensen



<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>
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An example

Slide adapted from Jurafsky & Martin



can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Slide adapted from Jurafsky & Martin
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More examples: Berkeley Restaurant Project sentences



From a corpus, you could estimate probabilities of bigrams and then calculate 
probabilities of new sentences:

P(<s> I want english food </s>) =

P(I|<s>)   

× P(want|I)  

× P(english|want)   

× P(food|english)   

× P(</s>|food)

=  .000031

Slide adapted from Jurafsky & Martin
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Bigram estimates of sentence probabilities
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Slide adapted from David Mortensen

Optimize computation

Doing computation in log space is preferred for 
language models
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Perplexity and evaluating language models



39Slide credit: David Mortensen



40Slide credit: David Mortensen



41Slide credit: David Mortensen
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Perplexity evaluates the probability assigned by a model to a collection of 
test documents, controlling for length and is, thus, useful for evaluating LMs. 

A better model of a text is one which assigns a higher probability to words 
that actually occur in the test set. Better models result in lower perplexities.

However: 

• It is a rather crude instrument 

• It sometimes correlates only weakly with performance on downstream tasks

• It’s only useful for pilot experiments 

• But it’s cheap and easy to compute, so it’s important to understand

Perplexity is an intrinsic metric for language modeling

Slide credit: David Mortensen



Training 38 million words, test 1.5 million words, 
WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Lower perplexity = better model

Slide adapted from Jurafsky & Martin
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The problem of zeros 
in n-gram language models
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Slide credit: David Mortensen
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N-grams in the test set that weren’t in the training set

Slide credit: David Mortensen



● Laplace and Lidstone smoothing: simply add a small pseudocount to 
all possible n-grams in the vocabulary so none are 0

● There are more advanced methods that work better in practice, 
including interpolation and backoff
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Strategies for handling zeros in n-gram LMs
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