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Course logistics

e Homework 2 was due last Thu 10-05

e Proposal and literature review is due this Thu 10-12, 11:59pm
o Instructions are on the project webpage
o Submit on Canvas
o One submission per group



https://michaelmilleryoder.github.io/cs2731_fall2023/hw2
https://michaelmilleryoder.github.io/cs2731_fall2023/project

How to do a literature review

e ook for NLP papers related to your topic in ACL Anthology,
Semantic Scholar, and Google Scholar

e For each paper, note:
o What they cite in their related work sections (find those

papers, iterate)

o Data
o Methods
o Findings

e For at least 4 papers, organize them into themes of approaches,
datasets, findings

e Ok: X paper did this, Y paper did this, Z paper did that

Good: X and Y papers did this, while Z improved with that

e Best: X and Y papers did this, Z improved, nobody has yet to do...



https://aclanthology.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833

Midterm course evaluation (OMETs)

e Please fill out the midterm course evaluation:
https://go.blueja.io /XdNK-fTiekgeUBLVLV4icQ

e | welcome all types of feedback (positive and
critical)

e Completely anonymous, will not affect grades

e Let me know what's working and what to improve
on while the course is still running!

e Please be as specific as possible



https://go.blueja.io/XdNK-fTi6kqeUBlVLV4jcQ

Lecture overview: RNNs part 2, encoder-decoder

e RNN language modeling
e [STMs

e RNNs for other NLP tasks
e Encoder-decoder model

e Attention



RNNSs for language modeling




RNN refresher

With a neighbor, talk about the following questions:

1. What are the 2 inputs to the hidden states in a simple 2-layer RNN?
2. What do RNNs allow us to do in NLP that we can’'t do with
feedforward neural networks?



An RNN Language Model
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Slide credit: David Mortensen



Training an RNN Language Model

- Get a big corpus of text, which is a sequence of words x(V, ..., x(7)
- Feed it into the RNN-LM, computing output distribution (O for every step t.

- Loss function on step t Is cross-entropy between the predicted probability
distribution ¥ and the true next word y(® (one-hot for x(t+1):

JO6) = ®,§0) = -3 "y log ) = —log ¥,

weV

- Average this to get overall loss for the entire training set:

=130 = 13-

Slide credit: David Mortensen



Training an RNN Language Model

Slide credit: David Mortensen
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Training an RNN Language Model

Slide credit: David Mortensen
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Computing Loss and Gradients in Practice

- In principle, we could compute loss and gradients across the whole corpus
(x(M, ... x(M) but that would be incredibly expensive!

T

(6) = = 3 10()

=il

- Instead, we usually treat X ... x(T) as a document, or even a sentence

- This works much better with Stochastic Gradient Descent, which lets us
compute loss and gradients for little chunks and update as we go.

- Actually, we do this in batches: compute J(#) for a batch of sentences; update
weights; repeat.

12

Slide credit: David Mortensen



We Will Skip the Details of Backpropogation in RNNs for Now

- The fact that training RNNs involves backpropagation over timesteps,
summing as you go, means that it (the backpropagation through time

algorithm) is a bit more complicated than backpropagation in feedforward
neural networks.

- We will skip these details for now, but you will want to learn them if you are
doing serious work with RNNSs.

13

Slide credit: David Mortensen



Generation with RNN LMs

o Ateach time step ¢, we sample w,from P(W,| ...), and feed it to the
next timestep!
e LM with this kind of generation process is called autoregressive LM

Sample wy Sample w,

ﬂ@ﬁ@@

|

Xo = embed(wy)

A Beginning-of-sentence

(BOS) token 14
Slide adapted from Tianxing He



Advantages of RNN Language Models

- Input can be of an arbitrary length
- Computation can use information from many steps back (in principle)

- Longer inputs do not mean larger model sizes

- Same weights applied at every time step—symmetry

15
Slide credit: David Mortensen



Disadvantages of RNN LMs

- Recurrent computation is slow
- Computing h® requires computing h{=" which requires computing h(t=2)
- Cannot be parallelized
- In practice, it is difficult to access information from many steps back (cf. the
VANISHING GRADIENT PROBLEM)

16

Slide credit: David Mortensen



Vanishing gradient problem
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Slide adapted from Chris Manning



Vanishing gradient problem
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Vanishing gradient problem

h(2) h®)
o 6]
1% %4 ® \%%4 | ® \ \%%4
1@ 1@
® O
oJW  |6h® . Oh®) Oh¥W|  aJW
or® ~ |op®m R RO aR®

What happens if these are small?

Slide adapted from Chris Manning

19



Vanishing gradient problem
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Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
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Vanishing gradient problem

e Gradient signal from far away Is lost because it's much smaller than
gradient signal from close-by.

e S0 model weights are basically updated only with respect to near
effects, not long-term effects

e LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy more
toner. It was very overpriced. After installing the toner into the
printer, she finally printed her ____
o To be successful, need to model the dependency between “tickets” in

the beginning and very end of the paragraph
o If the gradient is small, can’t learn this long-range dependency

21
Slide adapted from Chris Manning



LSTMs
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LSTMs Address (but Do not Solve) the Vanishing and Exploding Gradient Problems

- LSTMs: Long Short Term Memory
- Process data sequentially, but keep hidden state through time

- Still subject, at some level, to vanishing gradients, but to a lesser degree that
traditional RNNs

- Widely used in language modeling

23
Slide credit: David Mortensen



LSTMs: real-world success

- In 2013-2015, LSTMs started achieving state-of-the-art results

- Successful tasks include handwriting recognition, speech recognition, machine
translation, parsing, and image captioning, as well as language models
- LSTMs became the dominant approach for most NLP tasks
- Now (2019-2023), Transformers have become dominant for all tasks
- For example, in WMT (a Machine Translation conference + competition):
- In WMT 2014, there were 0 neural machine translation systems (!)

- In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
- In WMT 2019: “RNN" 7 times, "Transformer” 105 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/ WMT028.pdf

Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019,

Slide adapted from Chris Manning http://www.statmt.org/wmt18/pdf/WMT028.pdf
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RNNs for other NLP tasks
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RNNs for tasks other than language modeling

many to one many to many many to many
! s e
il s i el

e Text classification (many to one)
e Encoder-decoder, machine translation (many to many)
e Language modeling, sequence labeling (many to many) Stide adptedfom 26

David Mortensen



RNNs to encode sentences for text classification

positive How to compute
sentence encoding?

Basic way:
Use final hidden
state

Sentence
encoding

W

lot

overall / enjoyed the movie
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Slide adapted from Chris Manning



RNNs to encode sentences for text classification
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sentence encoding?
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Encoder-decoder architecture
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Parts of an encoder-decoder

Encoder: that accepts an input sequence, x”, and generates a
corresponding sequence of contextualized representations, h". LSTMs,
convolutional neural networks, Transformers can all be encoders
Context: ¢, which is a function of h", and conveys the essence of the
Input to the decoder.

Decoder: which accepts ¢ as input and generates an arbitrary length
sequence of hidden states h™ , from which a corresponding sequence
of output states y™, can be obtained

30



Encoder-decoder (seq2seq) architecture with RNNs

Target sentence (output)
Encoding of the source sentence. A
Provides initial hidden state
for Decoder RNN.
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Encoder-decoder (seg2seq) is versatile!

Many NLP tasks can be phrased as sequence-to-sequence:
- Summarization (long text - short text)

- Dialogue (previous utterances - next utterance)

- Parsing (input text - output parse as sequence)

- Code generation (natural language - Python code)
Training corpora needed:

- input <SEPARATOR> output

32
Slide adapted from Chris Manning



Training an encoder-decoder RNN
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.
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The attention mechanism
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Attention makes context available beyond the bottleneck

bottleneck Decoder

A . ‘
DT ®AY  Requiring the context ¢ to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

Encoder

e Bottleneck means that early timesteps in the encoder aren't as
accessible

e However, in tasks like MT, we may want to pay attention to different
parts of the input in different timesteps.

35
Slide adapted from David Mortensen, Jurafsy & Martin, Tianxing He



Attention visualized
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e This alignment is not trivial!

e The attention module is proposed to learn this alignment in an end-to-end fashion.

36
Slide adapted from Tianxing He



The attention mechanism [Bahdanau et al. 2014]

We now focus on timestep t.

enc
h;

For each encoder state , we compute an alignment score @; = (h¢")T W, h&es.

Then we get an attention distribution a = softmax(a).

We can then reweight the encoder states by a and pass Y}; a;h{"¢ to the decoder.

The parameter W, is shared across time steps.
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Attention: learned ali
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Wrapping up

e RNNSs are effective neural networks for sequences
o (Can handle sequences of varying length
o Can “remember” information from earlier timesteps
e RNNs can be used for language modeling and other NLP tasks
e [STMs are a type of RNNs that handles vanishing gradient problem

e The encoder-decoder framework “encodes” sequential input and
then “decodes” sequential output

e The attention mechanism weights encodings of relevant pieces of the
iInput when producing output
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Questions?
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