04. Transformers

Transformers may not fix all your NLP problems.

But they are worth some attention.

Source: Ramsri Goutham

CS 2731 Introduction to Natural Language Processing

Session 13: Transformers part 1, beam search

Michael Miller Yoder
October 11, 2023

University of
Pittsbyurgh School of Computing and Information

Course logistics

e Proposal and literature review is due tomorrow, Thu 10-12, 11:59pm
o Instructions are on the project webpage
o Submit on Canvas
o One submission per group

e (Organize at least 4 papers into themes of approaches, datasets,
findings
e Discussion post instead of reading quiz for Monday (TBD)

https://michaelmilleryoder.github.io/cs2731_fall2023/project

Lecture overview: Transformers part 1, beam search

THEIR LUAR. OUR LUORLDO.

e Self-attention
e Multi-headed attention

e Residual connections and layer
normalization

e Transformer blocks
e Beam search
e GPT preview

e C(lass time to fill out midterm OMETs

From recurrence to self-attention

Transformers improved on RNNs and CNNs

e Google introduced Transformers in 2017 [Vaswani et al. 2017,
“Attention is all you need”]

e At that time, most neural NLP models were based on
o RNNs
o CNNs

These were good

For many tasks, Transformers were better

Has become the most successful NN architecture in NLP
Adopted by famous pretrained LLMs (BERT, GPT)

Slide adapted from David Mortensen

Issues with recurrent models: Linear interaction distance

--

tasty pizza

e RNNSs are unrolled “left-to-right”.
o This encodes linear locality: a
useful heuristic!
o Nearby words often affect each
other's meanings
e Problem: RNNs take O(sequence

length) steps for distant word O(sequence length)

: : A
pairs to interact { \
i—AHq—A... i‘_’i‘_‘i...‘_’i
was

The chef who ...

Slide adapted from John Hewitt

Issues with recurrent models: Linear interaction distance

O(sequence length) steps for distant word pairs to interact means:
- Hard to learn long-distance dependencies (because gradient problems!)

- Linear order of words Is “baked in”; we already know linear order isn't
the right way to think about sentences...

> (X X o0 — 1 —
+000 o000 —
was

The chef who ... /

Info of chef has gone through
O(sequence length) many layers!

Slide adapted from John Hewitt

Issues with recurrent models: Lack of parallelizability

Forward and backward passes have O(sequence length) unparallelizable
operations

- GPUs can perform a bunch of independent computations at once!
- But future RNN hidden states can't be computed in full before past RNN
hidden states have been computed

- Inhibits training on very large datasets!

Slide adapted from John Hewitt

If not recurrence, then what? How about attention?

e Attention treats each word’s representation as a query to access and incorporate
Information from a set of values.

e We saw attention from the decoder to the encoder; today we'll think about
attention within a single sentence (self-attention)

Number of unparallelizable operations does not increase with sequence length.
Maximum interaction distance: O(1), since all words interact at every layer!

attention All words attend

to all words in

attention previous layer;
most arrows here

embedding l l . . are omitted
h; h, h;
e adapted from o Howi Numbers indicate min # of steps before a state can be computed | 10

Self-attention: all you need

Layer:| 5 ¢ Attention:| Input-Input §

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Slide credit: David Mortensen

Take the sentence: “The animal didn’t cross
the street because it was too tired”. What is
the antecedent of it?

Self-attention allows the model to “attend”
to all of the other positions and to process
each position (including the and animal) to
help it better encode the pronoun it.

You can compare this to the hidden state in

an RNN—it conveys information about other
words in the sequence to the position one is
currently processing.

Transformers rely on self-attention.

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys In attention, the query matches all keys softly,
that map to values. The query matches to a weight between 0 and 1. The keys’ values
one of the keys, returning its value. are multiplied by the weights and summed.
keys values keys values Weighted
T ; Sum
a ‘ vl vl
b i v2 v2
query 4 output
d ic v3 v3 —_—
' ‘ output z
- d V4 —> v4 v4
‘n e ‘ v5 v5

Slide credit: John Hewitt 12

Computing Self-Attention, Step One: Compute Key, Query, and Value Vectors

dy-dimensional d, x dy-dimensional IR
embeddings Weight Matrices :
T x, < WK — [T 1] Ry keys
T x, % we = g1 queries

1 x, X WY — 0 v, values

13

Slide credit: David Mortensen

Computing Self-Attention, Step Two: Weighted Sum of Value Vectors

We wash our cats
X1 X2 X X/
query-key dot product ¢i1-l =13 qQ1-l0 =24 - ks =20 qq- k. =12
e 3 2 20 _ 2
divide by /d Tz = 1-03 ﬁ =3.0 = =25 7 1.5
softmax .12 0.48 0.29 0.10
x value 012 xvqy 0.48xVvy 029 xv3 0.10 x v,
[%//
' / Slide credit: David Mortensen
sum Z- 14

Barriers and solutions for self-attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!

Slide credit: John Hewitt 15

Fixing the first self-attention problem: sequence order

e Since self-attention doesn’t build in order information, we need to
encode the order of the sentence in our keys, queries, and values.
e Consider representing each sequence index as a vector

p; € R%, fori € {1,2,...,n} are position vectors

e Don't worry about what the p, are made of yet!

e FEasy to incorporate this info into our self-attention block: just add
the p, to our inputs!

e Recall thatx, is the embedding of the word at index i. The positioned
embedding is: iERep STt

Xi = Xj + | 4 networks, we do this at the
first layer! You could
concatenate them as well,

Slide credit: John Hewitt but people mostly just add... 16

Position embeddings through sinusoids

e Sinusoidal position representations: concatenate sinusoidal
functions of varying periods:

/;nuj/100002“/d§\
cos(i/10000%*1/4) 5
Pi = :
<, E
o

sin(i/100002*3/d)

5 2x5/d

\(:05(1/10000 .)/ Index in the sequence
e Pros:

o Periodicity indicates that maybe “absolute position” isn’'t as important
o Maybe can extrapolate to longer sequences as periods restart!
e (ons:

o Not learnable; also the extrapolation doesn’t really work!

17
Slide adapted from John Hewitt

Position embeddings learned from scratch

e learned absolute position representations: Let all p, be learnable

parameters!
e Learn a matrixp € R¥" and let each p, be a column of that matrix!
e Pros:
o Flexibility: each position gets to be learned to fit the data
e (ons:
o Definitely can't extrapolate to indices outside 1, ..., n.
e Most systems use this!
e Sometimes people try more flexible representations of position:
e Relative linear position attention [Shaw et al., 2018]
e Dependency syntax-based position [Wang et al., 2019]

18
Slide adapted from John Hewitt

Barriers and solutions for self-attention as a building block

Barriers Solutions
* Doesn’t have an inherent ., * Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It’s all just weighted
averages

Slide credit: John Hewitt 19

Solution: add some feedforward NNs!

o
FF FF
1 1

self-attention

, [

i
EE FE FE FE
1 r P 1
self-attention
i [] [— L]
Wy w; w3 Wn
The chef who food

Intuition: the FF network processes the result of attention

Slide credit: John Hewitt 20

Multi-headed attention

21

Multi-Headed Attention Expands Transformer Models’ Ability to Focus on Differ-

ent Positions

Maintain distinct weight matrices for each attention head—distinct
representational subspaces:

X
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Qi
We@ | [i w;@

K K
f
| \ W

Vo V4
! | WV (o] W,V

22

Slide credit: David Mortensen

Hypothetical example of multi-headed attention

Attention head 1 Attention head 2 attends to
attends to entities syntactically relevant words
q q
e B H B EE N R R B
I went to Stanford CS 224n and learned I went to Stanford CS 224n and learned

Slide credit: John Hewitt 23

Multi-headed attention

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xl-TQTKx]- is high, but maybe we want
to focus on different j for different reasons?

* We'll define multiple attention “heads” through multiple Q,K,V matrices

d
o Let,Qp, K, Vp € RY*%, where h is the number of attention heads, and ¢ ranges
from 1to h.

* Each attention head performs attention independently:

- output, = softmax(XQ.K; XT) = XV,, where output, € R%/"
* Then the outputs of all the heads are combined!

- output = [outputy; ...; output,]Y, where Y € R%*4

* Each head gets to “look” at different things, and construct value vectors
differently. o

Slide credit: John Hewitt

Optimization tricks: residual connections
and layer normalization

25

Residual connections [He et al. 2016]

» Residual connections are a trick to help models train better.

« Instead of X = Layer(X@~1)) (where i represents the layer)

x@-1 xX®

Layer

« Welet X = X(=1 4 Layer(X¢=D) (so we only have to learn “the residual”
from the previous layer)

XD — | ayer ?—' x®

* Gradient is great through the residual
connection; it’s 1!

* Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet] %

Slide credit: John Hewitt

Layer normalization [Ba et al. 2016]

Slide credit: John Hewitt

Layer normalization is a trick to help models train faster.

Idea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

» LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

Let x € R be an individual (word) vector in the model.

let u = Z;'i=1 x;; this is the mean; u € R.

2
let o = \/i Z?=1(xj — pt); this is the standard deviation; o € R.

Let y € R? and B € R4 be learned “gain” and “bias” parameters. (Can omit!)
Then layer normalization computes:

x_

output = *y +

o+e€
Normalize by scalar /\/_ \ Modulate by learned

mean and variance elementwise gain and bias .

Transformer blocks

28

Transformers: Stacks of Encoders and Decoders

A transformer iIs a stack of ~6 encoders and decoders. The encoders are identical
In structure but do not share weights.

\
J ‘ | am a 5tudemJ

1

Encoders encode
entire input
sentences, so can
look at future words

DECODER
3
DECODER
4
DECODER
4
DECODER
4
DECODER
4
DECODER

ENCODER
3
ENCODER
4
ENCODER
4
ENCODER
4
ENCODER
4
ENCODER

X
|

A\ 4

) G) G G G

Decoders generate
output text a step
at a time, so can
not look at future
words (language
modeling)

_— G Gy G Gy S

\\V—F S J S J J)

()

=

29
Slide adapted from David Mortensen

Decoding: apply a “causal mask” for self-attention

To do auto-regressive LM, we need to apply a
“causal” mask to self-attention, forbidding it

We can look at these
(not greyed out) words

)

I |
. \ e & o
from getting future context. RPN RN
e Attimestep t, we set a; = Ofori>t ,[START]
The
For encoding
these words
! ;:;‘Q'L'f"'tt — = Self-attention. i

Wo Wq

Slide adapted from Tianxing He, John Hewitt

Wr

30

The transformer decoder

The Transformer Decoder Is a stack of
Transformer Decoder Blocks.

- Each Block consists of:
- Self-attention

- Add & Norm

- Feed-Forward

- Add & Norm

- That's 1t! We've gone through the Transformer
Decoder.

Slide adapted from John Hewitt

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

Add & Norm

Repeat for number
of encoder blocks

Block

Add Position
Embeddings

Embeddings

Decoder Inputs
31

The transformer encoder

Probabilities

- f
The Transformer Decoder constrains to —
.. . Linear
unidirectional context, as for language ~
models. —

Feed-Forward

- What if we want bidirectional context,
as for text classification?

Add & Norm

Repeat for number
of encoder blocks

- This is the Transformer Encoder. The
only difference Is that we remove the
masking in the self-attention.

Block

Add Position
. Embeddings
no masking! i

Embeddings

Decoder Inputs

32
Slide adapted from John Hewitt

The transformer encoder-decoder

e (Can use transformers for
encoder-decoder (seqg2seq)
framework

e Transformer decoder modified to
perform cross-attention to the

output of the encoder

Slide adapted from John Hewitt

Probabilities

Softmax
~
Linear
N

Add & Norm
N

Feed-Forward

Add & Norm

Add & Norm
N
Feed-Forward

Add & Norm Add & Norm

Block Block

Add Position

Add Position Embe 1{ dings

Embeddings
T

Embeddings Embeddings

Encoder Inputs Decoder Inputs 33

Cross-attention

* We saw that self-attention is when keys,
queries, and values come from the same
source.

* Inthe decoder, we have attention that
looks more like what we saw last week.

Add & Norm

Add & N
* Let hy, ..., h, be output vectors from the N

o aE d Feed-Forward : v
Transformer enc-oder, x; ER J Z1y ey Zp
* LetZz,...,Z, beinput vectors from the

Transformer decoder, z; € R¢

Add & Norm

Add & Norm

* Then keys and values are drawn from the

encoder (like a memory): Block Block
* ki = Khy, v; =Vh,. Add Position ASARSHIEh
; Embeddings Embeddings
* And the queries are drawn from the I — 3&
7 mbeddings
decoder, qi = in. Embeddings
Encoder Inputs Decoder Inputs 34

Slide adapted from John Hewitt

Drawbacks of transformers

e Quadratic compute in self-attention (today):
o Computing all pairs of interactions means our computation grows
quadratically with the sequence length!
o For recurrent models, it only grew linearly!
e C(Can't easily handle long sequences; usually set a bound of 512 tokens

e Position representations:
o Are simple absolute indices the best we can do to represent position?
o Relative linear position attention [Shaw et al., 2018]
o Dependency syntax-based position [Wang et al., 2019]

35
Slide adapted from John Hewitt

Beam search

36

Beam search improves on greedy decoding

e Traditional encoder-decoder framework involves generating highest
probability word (argmax) at each timestep in the decoding

e But this greedy approach suffers from issues if choosing early
high-probability tokens leads to low-probability sequences!

e Solution: Don't commit to just the 1 highest probability word, but
keep multiple options in a “beam”

e Prune to kR highest-probability sequences
after each timestep e

Image: iStock 37

Beam search example

log P (arrived the|x) log P (“the green witch arrived”|x)
=23 = log P (the[x) + log P(green|the,x)
) + log P(witch | the, green,x)
the ® +logP(arrived|the,green,witch,x)
/ +log P(END|the,green,witch,arrived,x)---., 27
log P(arrivedlx) -,69 log P(arrived witch|x) 32 -
=16 _~ =39 mage@ 2.5 ~_.END
arrived—-2.3—witch © 2.1 —
e arrived L
-1.6 -1.6 -2.3\ -4.8
- log P(the green|x) -.36 37 ! at
start log P(the|x) =-1.6 sy witch™—-1.8 came © |
'-92 =-,92 i 69 - green 5
' the ' 2.7
log P(the witch|x) “
\-1.2 =-2.1 2.2 . 51/END
t " witch <1t arrived
-1.61 -3.8
'2.3 & \
log P(y;|x) log P(y,ly;,x) log P(y3ly,,y ;%) log P(y4]y3,2,¥1,X) 10g P(¥s]y4y3,¥2,Y1:X)
Vi Y2 Y3 Vs Ys

Slide adapted from Jurafsky & Martin

38

Wrapping up

e Transformers are a high-performing NLP architecture based on
self-attention

e Transformers can be used for language modeling

e Beam search is used to find higher probability sequences than
greedy approaches find in decoding

39

Midterm course evaluation (OMETs)

e Please fill out the midterm course evaluation:
https://go.blueja.io /XdNK-fTiekgeUBLVLV4icQ

e | welcome all types of feedback (positive and
critical)

e Completely anonymous, will not affect grades

e Let me know what's working and what to improve
on while the course is still running!

e Please be as specific as possible/as you're
comfortable with

e C(loses Fri Oct 13, 11:59pm

40

https://go.blueja.io/XdNK-fTi6kqeUBlVLV4jcQ

Questions?

41

