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● Homework 2 contest winners!
○ LR with features

■ Tom with 73.7 accuracy on test set
■ Runner-up: Birju with 72.4

○ FNN with static word embeddings
■ Ben with 70.9
■ Runner-up: RJ with 70.8

● Homework 3 is due this Thu 11-02 at midnight
○ Updates: add-one smoothing is now optional, for extra credit
○ (Most of) an implementation for perplexity is provided
○ Ask questions in the Canvas discussion forum (or can email)

● Homework 4 will be released today. Is due Thu 11-09
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Course logistics: homeworks

https://michaelmilleryoder.github.io/cs2731_fall2023/hw3


● Pantho’s office hours next week will be Tuesday 2:45-3:45pm 
instead of Thursday. Is this better every week?

● Next project milestone is a basic working system due Thu 11-16
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Course logistics
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Core tasks and applications of NLP
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● Parts of speech

● Part-of-speech (POS) tagging

● Named entity recognition (NER)

● Hidden Markov Models (HMMs)
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Overview: POS tagging, NER, HMMs part 1
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Parts of speech



8
Slide credit: David Mortensen
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Slide credit: David 
Mortensen
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● Pronouns are generally considered, in English, to be a closed class—it 
is not easy to add new items to it. 

● What are we to make of neopronouns like xe and xem or ze and hir? 
● Their existence suggests that pronouns are not a completely closed 

class
○ Social movements can change grammar!
○ But it is difficult due to anti-transgender attitudes and to pronouns 

being a rather closed class in English
● In some languages (e.g., Thai) pronouns clearly are an open class
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What about pronouns?

Slide adapted from David Mortensen
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Part of speech (POS) tagging



Map from sequence x1,…,xn of words to y1,…,yn of POS tags 
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Part-of-speech tagging

Slide adapted from Jurafsky & Martin



Slide adapted 
from Jurafsky & 
Martin
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“Universal Dependencies” tagset [Nivre et al. 2016]



Slide credit: Diane Litman, 
Jurafsky & Martin
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Penn TreeBank tagset for English



○ Can be useful for other NLP tasks
■ Parsing: POS tagging can improve syntactic parsing
■ MT: reordering of adjectives and nouns (say from Spanish to English)
■ Sentiment or affective tasks: may want to distinguish adjectives or 

other POS
■ Text-to-speech (how do we pronounce “lead” or "object"?)

○ Or linguistic or language-analytic computational tasks
■ Need to control for POS when studying linguistic change like creation 

of new words, or meaning shift
■ Or control for POS in measuring meaning similarity or difference

Why part of speech tagging?

Slide adapted from Jurafsky & Martin
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Roughly 15% of word types are ambiguous
• Hence 85% of word types are unambiguous
• Janet is always PROPN, hesitantly is always ADV 
But those 15% tend to be very common. 
So ~60% of word tokens are ambiguous
E.g., back

earnings growth took a back/ADJ seat
a small building in the back/NOUN
a clear majority of senators back/VERB the bill 
enable the country to buy back/PART debt
I was twenty-one back/ADV then 
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How difficult is POS tagging in English?

Slide adapted from Jurafsky & Martin



Janet will back the bill
     AUX/NOUN/VERB?           NOUN/VERB?

Prior probabilities of word/tag
• "will" is usually an AUX

Identity of neighboring words
• "the" means the next word is probably not a verb

Morphology and wordshape:
○ Prefixes unable: un- → ADJ
○ Suffixes importantly: -ly → ADJ
○ Capitalization Janet: CAP → PROPN
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Sources of information for POS tagging

Slide adapted from Jurafsky & Martin



Supervised Machine Learning Algorithms:
• Hidden Markov Models
• Conditional Random Fields (CRFs)
• Neural sequence models (RNNs or Transformers)
• Large Language Models (like BERT), finetuned
All required a hand-labeled training set, all about equal performance 
(97% on English)
All make use of information sources we discussed
• Via human created features: HMMs and CRFs
• Via representation learning:  Neural LMs
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Standard algorithms for POS tagging

Slide adapted from Jurafsky & Martin
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Named entity recognition (NER)



○ Named entity, in its core usage, means anything that 
can be referred to with a proper name. Most common 
4 tags:
■ PER (Person): “Marie Curie”
■ LOC (Location): “New York City” 
■ ORG (Organization): “Stanford University”
■ GPE (Geo-Political Entity): "Boulder, Colorado"

○ Often multi-word phrases
○ But the term is also extended to things that aren't entities:
■ dates, times, prices
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Named entities

Slide adapted from Jurafsky & Martin



The task of named entity recognition (NER):

• find spans of text that constitute proper names

• tag the type of the entity. 
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Named entity tagging

Slide adapted from Jurafsky & Martin
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NER output

Slide adapted from Jurafsky & Martin



● Sentiment analysis: consumer sentiment toward a particular company 
or person?

● Question Answering: answer questions about an entity?
● Information Extraction: Extracting facts about entities from text.
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Why NER?

Slide adapted from Jurafsky & Martin



1) Segmentation
• In POS tagging, no segmentation problem since each word gets one tag.

• In NER we have to find and segment the entities!

2) Type ambiguity
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Why NER is hard

Slide adapted from Jurafsky & Martin



How can we turn this structured 
problem into a sequence problem 
like POS tagging, with one label per 
word?
[PER Jane Villanueva] of [ORG United 
Airlines Holding] discussed the [LOC 
Chicago ] route. 
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BIO tagging [Ramshaw and Marcus 1995]

Slide adapted from Jurafsky & Martin



BIO Tagging

B: token that begins a span
I: tokens inside a span
O: tokens outside of any span

# of tags (where n is #entity types):
1 O tag, 
n B tags, 
n I tags
 total of 2n+1
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BIO tagging 
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Hidden Markov Models (HMMs)
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Slide credit: David Mortensen
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A formal definition of the Hidden Markov Model (HMM)
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Slide credit: David Mortensen



39

We can use Bayes’ Rule to pick the right hidden POS tags

Slide adapted from Diane Litman,
Jurafsky & Martin

For timestep 1 through n:
● t1: the hidden state at timestep 1
● w1: the observed word at timestep 1
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● Parts of speech are grammatical classes of words like nouns, verbs, and 
adjectives

● Part of speech (POS) tagging assigns a part of speech to every input word 
in context

● Named entity recognition (NER) is the task of identifying named entities 
like people, locations, and organizations

● NER can be framed as a sequence labeling task with a BIO framework

● HMMs can be used for sequence labeling tasks like POS tagging and NER

● Key parameters of HMMs are transition and emission probabilities
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Wrapping up
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Questions?

Happy Halloween! 🎃👻


