BABE, MY LIFE IS A MARKOV CHAIN

Source: https://towardsdatascience.com/nlg-for-fun-a utomated-headlines-generator-6d0459f9588f GIVEN THE PRESENT, THE FUTURE DOES NOT DEPEND ON THE PAST

CS 2731 Introduction to Natural Language Processing

Session 18: POS tagging, NER, HMMs part 1

Michael Miller Yoder

October 30, 2023

School of Computing and Information

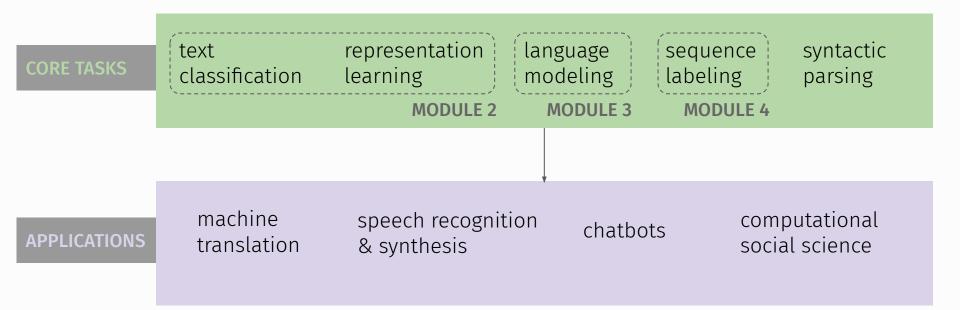
Course logistics: homeworks

- Homework 2 contest winners!
 - LR with features
 - Tom with 73.7 accuracy on test set
 - Runner-up: Birju with 72.4
 - FNN with static word embeddings
 - Ben with 70.9
 - Runner-up: RJ with 70.8
- <u>Homework 3</u> is due this Thu 11-02 at midnight
 - Updates: add-one smoothing is now optional, for **extra credit**
 - (Most of) an implementation for perplexity is provided
 - Ask questions in the Canvas discussion forum (or can email)
- Homework 4 will be released today. Is **due Thu 11-09**

Course logistics

- Pantho's office hours next week will be **Tuesday 2:45-3:45pm** instead of Thursday. Is this better every week?
- Next project milestone is a basic working system **due Thu 11-16**

Core tasks and applications of NLP



Overview: POS tagging, NER, HMMs part 1

- Parts of speech
- Part-of-speech (POS) tagging
- Named entity recognition (NER)
- Hidden Markov Models (HMMs)

Parts of speech

My cat who lives dangerously no longer has nine lives.

My cat who lives dangerously no longer has nine lives.

My cat who lives dangerously no longer has nine lives.

lives /lɪvz/ verb lives /lajvz/ noun

Examples of Parts of Speech

PART OF SPEECH	EXAMPLES	
noun	dog, cat, professor, exam, fear, loathing, oppression, void, text, Bavarian	
verb	enjoy, walk, finish, trust, hug, like, understand, be, text, drink	
adjective	nice, happy, red, exciting, ludicrous, funny, ancient, Bavarian	
adverb	slowly, quickly, shrewdly, foolishly, boisterously, undercover, yesterday	
preposition	to, for, from, under, by	
auxiliary verbs	auxiliary verbs be, have, must, might, will, would	
determiner	rminer the, a(n), this, that, my, her	
pronouns	he, she, it, this, that	
conjunctions	and, but, however, nevertheless, so	

Your English Teacher Was a Well-Intentioned Liar

Your English teacher probably meant well, but taught you many things about language that are inaccurate (like that a noun is a "person, place, thing, or abstract concept").

> Slide credit: David Mortensen

Remember the early 20th century American linguists who wanted to document endangered languages? They wanted to define parts of speech in an objective, language-neutral way, so the defined them **distributionally**. This works better than the semantic criteria that your English teacher taught you.

morphology What is the distribution of morphemes within these words? Same $POS \Rightarrow$ similar morphemes

syntax What is the distribution of words within phrases and sentences?
Same POS ⇒ similar roles/contexts

American Structuralists called these "form classes" but we call them "lexical classes" or "grammatical classes" or "parts of speech"

Classes to which neologisms are readily added. In English:

- **nouns** can be both subjects and objects of verbs and objects of prepositions, (usually) be singular or plural, have determiners, be modified by adjectives, and be possessed
- **verbs** can take noun phrases as arguments and tense morphology and can be modified by adverbs
- **adjectives** can modify nouns and take comparative and superlative morphology where allowed by prosody
- adverbs can modify verbs, adjectives, or other adverbs

Classes to which neologisms are not readily added. In English:

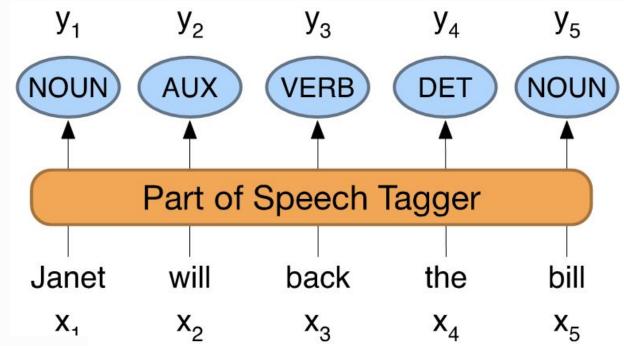
prepositions	occur before noun phrases, connecting them syntactically to larger phrases	
determiners	occur at the beginning of noun phrases	
conjunction	join phrases, clauses, and sentences	
auxiliary verbs	occur before (non-finite) main verbs	
particles	are associated with a verb and are "moveable" (e.g. <i>He tore off his shirt</i> versus <i>He tore his shirt off</i>	
numerals	are distributed in some ways like nouns and in others like adjectives	

What about pronouns?

- Pronouns are generally considered, in English, to be a closed class—it is not easy to add new items to it.
- What are we to make of **neopronouns** like *xe* and *xem* or *ze* and *hir*?
- Their existence suggests that pronouns are not a completely closed class
 - Social movements can change grammar!
 - But it is difficult due to anti-transgender attitudes and to pronouns being a rather closed class in English
- In some languages (e.g., Thai) pronouns clearly are an open class

Part of speech (POS) tagging

Map from sequence $x_1, ..., x_n$ of words to $y_1, ..., y_n$ of POS tags



"Universal Dependencies" tagset [Nivre et al. 2016]

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Open Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
U	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Den	VERB	words for actions and processes	draw, provide, go
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
s		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
×	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
D	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
Clo	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
Ŭ	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
GL	PUNCT	Punctuation	;,0
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Penn TreeBank tagset for English

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	° or "
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{ , <$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), $\}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Slide credit: Diane Litman, Jurafsky & Martin

\circ Can be useful for other NLP tasks

- Parsing: POS tagging can improve syntactic parsing
- MT: reordering of adjectives and nouns (say from Spanish to English)
- Sentiment or affective tasks: may want to distinguish adjectives or other POS
- Text-to-speech (how do we pronounce "lead" or "object"?)
- Or linguistic or language-analytic computational tasks
 - Need to control for POS when studying linguistic change like creation of new words, or meaning shift
 - Or control for POS in measuring meaning similarity or difference

POS Tagging is a Disambiguation Task

Consider the following sentences:



There are eight different ways of tagging this sentence if words are taken out of context. POS Tagging task: **choose the best of these**.

How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common.

So ~60% of word tokens are ambiguous

E.g., back

earnings growth took a back/ADJ seat a small building in the back/NOUN a clear majority of senators back/VERB the bill enable the country to buy back/PART debt I was twenty-one back/ADV then

Sources of information for POS tagging

Janet will back the bill AUX/NOUN/VERB? NOUN/VERB?

Prior probabilities of word/tag

• "will" is usually an AUX

Identity of neighboring words

• "the" means the next word is probably not a verb

Morphology and wordshape:

0	Prefixes	unable:	un- $ ightarrow$ ADJ
0	Suffixes	importantly:	$-ly \rightarrow ADJ$
0	Capitalization	Janet:	$CAP \rightarrow PROPN$

Supervised Machine Learning Algorithms:

- Hidden Markov Models
- Conditional Random Fields (CRFs)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

All required a hand-labeled training set, all about equal performance (97% on English)

All make use of information sources we discussed

- Via human created features: HMMs and CRFs
- Via representation learning: Neural LMs

Named entity recognition (NER)

Named entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
 - PER (Person): "Marie Curie"
 - LOC (Location): "New York City"
 - ORG (Organization): "Stanford University"
 - GPE (Geo-Political Entity): "Boulder, Colorado"

○ Often multi-word phrases

• But the term is also extended to things that aren't entities:

dates, times, prices

The task of named entity recognition (NER):

- find spans of text that constitute proper names
- tag the type of the entity.

NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

- Sentiment analysis: consumer sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

Why NER is hard

1) Segmentation

- In POS tagging, no segmentation problem since each word gets one tag.
- In NER we have to find and segment the entities!
- 2) Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO tagging [Ramshaw and Marcus 1995]

How can we turn this structured problem into a sequence problem like POS tagging, with one label per word?

[PER Jane Villanueva] of [ORG United Airlines Holding] discussed the [LOC Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	0
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	0
the	0
Chicago	B-LOC
route	0
•	0

BIO tagging

B: token that *begins* a spanI: tokens *inside* a spanO: tokens outside of any span

of tags (where n is #entity types):1 O tag,

n B tags,

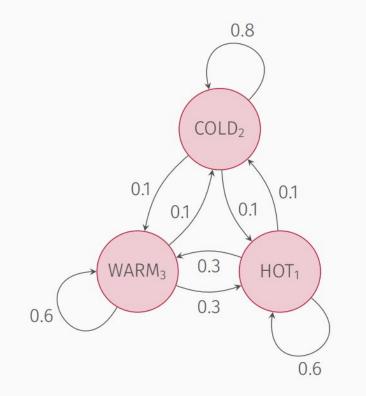
n I tags

total of 2*n*+1

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	0
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	0
the	0
Chicago	B-LOC
route	0
	0

Hidden Markov Models (HMMs)

Markov Chains Tell Us about the Probabilities of Sequences of Random Variables



The figure to the left represents a Markov Chain.

- States
- Transitions
- Weights (probabilities)

The probability of $COLD_2$ at the timestep after $COLD_2$ is 0.8. The probability of HOT_1 after $COLD_2$ is 0.1. The probability of $HOT_1 \rightarrow WARM_3 \rightarrow$ $COLD_2$ is $0.3 \times 0.1 = 0.03$ **The Markov Assumption applies.**

"When predicting the future, the past doesn't matter—only the present." in other words

$$p(q_i = a | q_1 \dots q_{i-1}) = P(q_i = a | q_{i-1})$$

This is the same assumption we made for ngram language modeling.

A formal definition of the Hidden Markov Model (HMM)

- $Q = q_1, \dots, q_N$ a set of *N* states $A = q_1, \dots, q_N$ a set of *N* states
- $A = a_{1,1}, a_{1,2}, ...$ a transitional probability matrix of cells a_{ij} , where each cell is a probability of moving from state *i* to state *j*. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
- $O = o_1, \dots, o_T$ a sequence of *T* observations, each drawn from a vocabulary *V*.
- $B = b_1, \dots, b_n$ a sequence of observation likelihoods (or emission probabilities). The probability that observation o_t is generated by state q_i .
- $\pi = \pi_1, \dots, \pi_N$ an initial probability distribution over states (the probability that the Markov chain will start in state q_i . Some states q_j may have $p_j = 0$ (meaning they cannot be initial states). $\sum_{i=1}^{N} \pi_i = 1 \forall i$

HMMs Assume the Markov Assumption and Output Independence

Like Markov Chains, HMMs require the Markov Assumption:

 $p(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

The further assume that the observed outputs depend only upon the state (**Output Independence**)

$$P(o_i|q_i,\ldots,q_i,\ldots,q_T,o_1\ldots,o_i,\ldots,o_T)=P(o_i|q_i)$$

Where q_1, \ldots, q_T are the states at each time step and o_1, \ldots, o_T are the outputs at each time step. In other words:

- The preceding or following states do not matter (we assume)
- The preceding or following outputs do not matter (we assume)

We can use Bayes' Rule to pick the right hidden POS tags

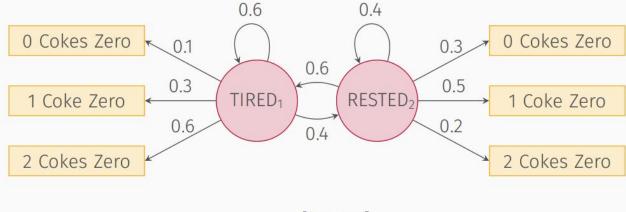
$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n) \approx \operatorname*{argmax}_{t_1^n} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

For timestep 1 through *n*:

- t_1 : the hidden state at timestep 1
- w_1 : the observed word at timestep 1

The Coke Zero Example

Since I do not drink coffee, I must drink Coke Zero to remain caffeinated. My consumption is related to my exhaustion. Could you build a model to infer my exhaustion from the number of Coke Zero bottles added to my wastebasket each day?



 $\pi = [0.7, 0.3]$

Wrapping up

- Parts of speech are grammatical classes of words like nouns, verbs, and adjectives
- Part of speech (POS) tagging assigns a part of speech to every input word in context
- Named entity recognition (NER) is the task of identifying named entities like people, locations, and organizations
- NER can be framed as a sequence labeling task with a BIO framework
- HMMs can be used for sequence labeling tasks like POS tagging and NER
- Key parameters of HMMs are transition and emission probabilities

Questions?

Happy Halloween! 🎃 👻