What do you call a bad dream about machine learning?
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Course logistics

e Project area and contribution form is due Thu 09-21, 11:59pm

o Please plan meeting with your groups to discuss project ideas

o Ifyou don't have any specific ideas, that's fine! We will help you come up with
some.

o No need to submit anything on Canvas. Just fill out the form
e Discussion forum post due Mon 09-25, 12:00pm noon
o Discussion of bias in word embeddings. Additional reading of Blodgett et al. 2020

o Michael will post prompt soon
o No reading quiz

e Reading quizzes and discussion forums will be available until class, but
considered late and will be given half credit if are submitted after 12 noon


https://forms.gle/uxwAmLCL55SjLby5A
https://aclanthology.org/2020.acl-main.485.pdf

Lecture overview: logistic regression part 2

e Learning the weights for features in logistic regression
e C(Cross-entropy loss function

e Stochastic gradient descent

e Batch and mini-batch training

e Regularization

e Training multinomial logistic regression



Logistic regression: learning the weights




Wait, where did the w's come from?

Supervised classification:
* We know the correct label y (either 0 or 1) for each x.
* But what the system produces is an estimate,

We want to set w and b to minimize the distance between our
estimate yl) and the true yl.

* We need a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

Slide credit: Jurafsky & Martin



Learning components

A loss function:
mClross-entro Py lOSS

An optimization algorithm:
mstochastic gradient descent

Slide credit: Jurafsky & Martin



The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
y [= either O or 1]

We'll call this difference:
L(y ,y) = how much y differs from the true y

Slide credit: Jurafsky & Martin



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) From the Bernoulli

Since there are only 2 discrete outcomes (0 or 1) we can distribution, also expressed
express the probability p(y|x) from our classifier (the thing as:
we want to maximize) as '

plyle)=17 LY =2
pOR) = (=)
noting:
if y=1, this simplifies to y |
if y=0, this simplifies to 1- y
y=0.3
I 0.2
| 1 (|| -

Slide adapted from Jurafsky & Martin



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize:  p(ylx) = (1 -9)'"
Now take the log of both sides (mathematmally handy)
Maximize:  logp(ylx) = log[§” (1—9)"]
= ylogy+ (1 —y)log(1—7)

Whatever values maximize log p(y|x) will also maximize p(y|x)
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Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Lcg(9,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)]

1
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Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Leg(§,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)

This happens to be the formula for cross-entropy,
a measure of difference between distributions
from information theory

Claude Shannon
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Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Lcg(9,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)]

Plugging in the definition of ¥

Lee(9:y) = —[logo(w-x+b)+(1-y)log(l—o(w-x+Db))

13
Slide credit: Jurafsky & Martin



Let's see If this works for our sentiment example

We want loss to be:
« smaller if the model estimate Is close to correct

* Dbigger If model Is confused
Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises, and the writing is second-rate .

So why was it so enjoyable ? For one thing, the cast is great . Another nice touch
is the music . | was overcome with the urge to get off the couch and start
dancing . It sucked me in, and it'll do the same to you .
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Let's see If this works for our sentiment example

True value I1s y=1. How well is our model doing?

p(+/x)= P(Y=1|x) = s(w-x+b)
= s([25-50-1.2052007-321,30419]+ 0.1)
= s(.833)
= 0.70 (5.6)

Pretty well! What's the loss?

Lee(9,y) = —lylogo(w-x+b)+ (1 —y)log(l —o(w-x+Db))]
= —[logo(w-x+b)]
= —log(.70)
— 36 B}

Slide credit: Jurafsky & Martin



Let's see If this works for our sentiment example

Suppose true value instead was y=0.

p(-/x)= P(Y=20/x) = 1-s(w'x+Db)

= 0.30
What's the loss?
Leg(9,y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
_ —[log(1—0o(w-x+b))]
- —1log (.30)

— 1.2

16
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Let's see If this works for our sentiment example

The loss when model was right (if true y=1)

Leg(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l —c(w-x+b))]
= —[logo(w-x+b)]
= —log(.70)
= 36
Is lower than the loss when model was wrong (if true y=0):
Leg(9,y) = —[vlogo(w-x+b)+(1—y)log(1 — o (w-x+b))]

- ~[log (1 - 6(w+x+b))

= —log (.30)

= 1.2

Sure enough, loss was bhigger when model was wrong!
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Stochastic gradient descent
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Our Goal: Minimize the Loss

Let's make it explicit that the loss function is parameterized by weights 6 = (w, b).
We'll represent § as f(x; #) to make the dependency on § more obvious.

We want the weights that minimize the loss (Lcg), averaged over all examples:

. [ . |
9= N i ). gy. y{) 1
arggnm = ;_1 ce(f(x*; 6), ") (11)
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The Intuition of Gradient Descent

Slide credit: David Mortensen

- You are on a hill
- It is your mission to reach the river at

the bottom of the canyon (as quickly as
possible)

- What is your strategy?

1. Determine in which direction the
steepest downhill slope lies

2. Take a step in that direction

3. Repeat until a step in any direction will
take you up hill
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Our Goal: Minimize the Loss

For logistic regression, the loss function is convex

- Just one minimum
- Gradient descent is guaranteed to find the minimum, no matter where you start

Non-Convex Function

Non-Convex Function

local
minimum

global global
minimum minimum

22
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss * Should we move
right or left from here?

0 (goal)

23
Slide adapted from Jurafksy & Martin



Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss 1!

slope of loss at wl/

1S negative

So we'll move positive

A\

Slide adapted from Jurafksy & Martin



Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A

A
A

Loss

one step
of gradient

slope of loss at Wl//' descent

1S negative

So we'll move positive

A J

Wl Wmin W
0 (goal)

Slide adapted from Jurafksy & Martin



A Gradient is a Vector Pointing in the Direction of Greatest Increase

The GRADIENT of a function of many variables is a vector pointing in the direction of the
greatest increase in a function.

GRADIENT DESCENT: Find the gradient of the loss function at the current point and move in
the opposite direction.

26
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How Much Do We Move in a Step?

- We move by the value of the gradient (in our example, the slope)

diWLCE(f(X; w),y)

weighted by the LEARNING RATE 7
- The higher the learning rate, the faster w changes:

Wer = W= 1 Le(f(w).) (12)

27
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How Do We Do Gradient Descent in N Dimensions?

We want to know where in the N-dimensional space (of the N parameters that make up 6)
we should move.

The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of the N dimensions.

28
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Imagine 2 dimensions, w and b

Visualizing the gradient COSt(W’b)
vector at the red point

It has two dimensions
shown In the x-y plane

Slide adapted from Jurafksy & Martin



But Real Gradients Have More than Two Dimensions

- They are much longer

- They have lots of weights

- For each dimension w;, the gradient component | tells us the slope w.rt. that variable

- “How much would a small change in w; influence the total loss function L?”
- The slope is expressed as the partial derivative 9 of the loss ow;

- We can then define the gradient as a vector of these partials

30
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Computing the Gradient

Let's represent § as f(x; #) to make things clearer:

[ o L% 6),Y)
2 L(f(x:0),y)
Vol(f(x;6),y) = | awmL((X:6).Y)

| a0 L(f(x:0),y) |
Note that, since we are representing the bias b as wy, 6 iIs more-or-less equivalent to w.

What is the final equation for updating 8 based on the gradient?
Ory1 = 6: — nVL(f(x; 6),Y)
(For us, L is the cross-entropy l0ss Lcg).

31
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So What Are These Partial Derivatives Used in Logistic Regression?

The textbook lays out the derivation in §510 but here's the basic idea:

Here is the cross-entropy loss function (for binary classification):

Lee(V,y) = —[yloga(w - x + b) + (1 — y) log(1 — o(w - X + b))] (15)

The derivative of this function is:

aLCE(S}a y)

o [o(w - x + b) — y]x; (16)

which is very manageable!

32
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function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L 1s the loss function
# f 1s a function parameterized by 6
# x 1s the set of training inputs x(l), x2), s x(
# y is the set of training outputs (labels) y<1), y(z), A y(’")

m)

0<+0
repeat til done
For each training tuple (x(9, y()) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
Compute $() = f(x();0)  # What is our estimated output §?
Compute the loss L($),y()) # How far off is $(¥)) from the true output y(!)?

2. g VoL(f(x\;0),y®) # How should we move 6 to maximize loss?
3.00 —ng # Go the other way instead
return 6

Slide adapted from Jurafksy & Martin
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A Sidenote: Hyperparameters

The learning rate (our n) is a hyperparameter, a term you will keep hearing
- Set it too high? The learner will catapult itself across the minimum and may not
converge
- Set it too low? The learner will take a long time to get to the minimum, and may not
converge in our lifetime
But what are hyperparameters again?
- Hyperparameters are parameters in a machine learning model that are not learned
empirically

- They have to be set by the human who is designing the algorithm

34
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Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
x, =3 (count of positive lexicon words)

x, =2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in ©° are zero:
w,=w,=b =0
n=0.1

35
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Example of gradient descent

Update step for update O is:

d =3; X, =2
Orr1 = 0; — Uy —L(f(x;0), y) ' ’
where JLce(J,y) .
8Wj - [ (W X—|—b) ] J

Gradient vector has 3 dimensions:

- dLcg(9y) T

s 7 N L )‘7)‘

ILcg(F.y)
|

36
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Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3 x, =2
Orr1 = 0 — L(f(3359)a y) ' ’
dH
dLcg(9,
where BEVS ) _ (o(w-x+b) 3k,

Gradient vector has 3 dimensions:

~ ILce(Py) T

P 8w1

L 2

Vap= | S| = |
3LCE<2)A’~,)’)

Ah

Slide adapted from Jurafksy & Martin



Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3 x, =2
Orr1 = 0 — L(f(3359)a y) ' ’
dH
dLcg(9,
where BEVS ) _ (o(w-x+b) 3k,

Gradient vector has 3 dimensions:

— aL ’\’ —
ZE ] T (olwextb)—y)x
Vw,b = aLSIiV()'v}’) = (O‘(W X+ b) — y)xz
3LCE<2)A’~,)’) oc(w-x+b)—y

Ab

Slide adapted from Jurafksy & Martin



Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3; x, =2
Orr1 = 0 — L(f(:c;@), y) ' ’
dH
dLcg(9,
where CaEVS ) _ lo(wx+b) Ix,

Gradient vector has 3 dimensions:

8w1A
Vs = ILcE(Py) | —

ow
JLcE (297)’)
Ah

[ aLCE()’)\D’) 1l {

Slide adapted from Jurafksy & Martin



Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X, =3, x, =2
Or1 = 0; — dH —L(f(z;0), y)
ILcx (5,
where CaEVS ) _ (o (w-x+b) —ylx;

Gradient vector has 3 dimensions:

8w1A
Vs = ILcE(Py) | —

ow
JLcE (297)’)
Ah

[ aLCE()’)\D’) 1l {

Slide adapted from Jurafksy & Martin



Example of gradient descent

dLcE(¥,y) 7 |
SO [ U i ol B ol I ol B
achfygy) Lawx+b)—y J [0(0)—1 J [—0.5 J [—O.SJ

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

d —_ .
0t-|-1 = 9t — T}@L(‘f(x, 9), y) n=0.1;

0! =

Slide adapted from Jurafksy & Martin



Example of gradient descent

dLcE(¥,y) 7 |
SO [ U i ol B ol I ol B
achlgé,y) [Gw-x+b)—y J [0(0)—1 J [—0.5 J [—O.SJ

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

01 = 0 — 77%[/(]0(333 0), y) n=0.1
[ wy | 1.5
ol=1w, | —n | —1.0
b - —0.5

Slide adapted from Jurafksy & Martin




Example of gradient descent

ILer (5
Vi = ce(Py)

wt | _

(o
(o

w-x+b)—y)x
w-x+b)—y)x;
LGW-X-{-b)—y J

|1

o I el i e

N

|05

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

0r 1 =0; —

0! =

Slide adapted from Jurafksy & Martin

d
N—g L(f(2;0), y)
Wi 1 [ —1.5-
wy | —m | —1.0
b | | -05

15

05

n=0.1;



Example of gradient descent

~ JLcp(Py) T

oheea) [(O(wex+b)=ym]
Tur= | 2550 | = | (ot e i) wp | =

aLCSISyA,y) [ o(w-x+Db)—y J [

o I el i e

N

|05

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

d
01 = 0 — U@L(f(aﬂ 0), y)
Wy [ —1.5 ]
ol=1w, | —n| -10| =
iﬁ'}‘iﬁted B b | | —0.5 |

from
Jurafksy
& Martin

15
1
05

n=0.1;

Note that enough negative examples would eventually make w, negative



Batch and mini-batch training
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- In stochastic gradient descent, the algorithm chooses one random example at each
iteration

- The result? Sometimes movements are choppy and abrupt

- In practice, instead, we usually compute the gradient over batches of training
Instances

- Entire dataset: BATCH TRAINING
- m examples (e.g., 512 or 1024): MINI-BATCH TRAINING

46
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Regularization
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Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

O A random word that perfectly predicts y (it happens to only occur in one class)
will get a very high weight.

O Failing to generalize to a test set without this word.

A good model should be able to generalize

48
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Regularization Is One Solution to Overfitting

Add a regularization term R(6) to the loss function (which we will write, for now, as
maximizing log probability rather than minimizing loss):

m
g = argmaxz log P(y") | XY — aR(H) (29)
o =

The insight: we choose, for R(6), a function that penalizes large weights because fitting
the data well with big weights is not as good as fitting the data a bit less well with small
weights.

49
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In L2 Regularization, One Regularizes by the Sum of the Squares of the Weights

We can define R(#) as the (square of the) L2 norm, that is, the Euclidean distance from 6
to the origin.

n
R(O) = [I6]15 =) 67 (30)
j=1
If we L2 regularize the objective function, we get:

m n
f = argmax [Z log P(y1") | X(i))] — Z 0]-2 (31)
=

0 =1

The larger the weights are, the farther the vector will be from the origin, and thus the
more will be deducted from the log probability.

50
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L1 Regularization Regularizes by the Sum of the Absolute Value of the Weights

L1 Regularization (or the lasso regression) is named after the L1 norm ||W||;:

- The sum of the absolute value of the weights
- The MANHATTAN DISTANCE

R(0) = [0]|» = Z A (32)

When added (or rather, subtracted) from an objective function, it looks like this:

m n
f = argmax [Z log P(y"" | X(i))] —a Z 16| (33)
=1

e i=1
While the function is different, the insight is similar to that for the L2 norm.

51
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Training multinomial logistic regression
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Categorical Cross-Entropy Loss for Multinomial Logistic Regression

How “distant” is y from y? One measure is

categorical cross-entropy loss:
Compare y, a ONE-HOT VECTOR (one one, all § 24

other eAlements zero) and e = Z T:log S,
y y =1
= —|1log, 0.775 + 0 log, 0.126 +
il 1 0 |[ i2039 0l gcz) 070]
) og, U. + U log, 0.

0116 Lee(9, ) 0 : .
55 > ’ = —log,0.775

' = 0.3677
0.070 0

The elements of y that correspond to
0-elements in y are effectively ignored.

58]
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Generalizing Your Losses: The Negative Log Likelihood Loss

Reminder: the loss function for binary logistic regression (LR with two classes) is

Lee(9,y) = —log p(y | X) = —[ylog § + (1 — y) log(1 — §)] (23)

Note that we have two terms—one for when y = 1 and one for when y = 0—corresponding
to the two classes. What if we have K classes?

K

LCE(ya y) = — Z Ve |Og 9k (24)
h=1

= —logy. (where cisthe correct class) (25)

= —logp(yc=1|x) (where cis the correct class) (26)

exp(We - X + be)

2 (c is the correct class) (27)
> _j=1 €xp(w;j - X + bj)

= —log

How did we get from (24) to (25)? There is only one correct class.

Slide credit: David Mortensen
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What We Actually Need to Compute Gradient Descent is the Gradient of the Loss

Consider one piece of the gradient—the derivative with respect to one weight.
- For each class k the weight of the ith element of x (the input features) is wy;.
- What is the partial derivative of Lee(Y,y) wrt wy, ;?
- It turns out, after some math, that the difference between the true value for the class

k (either 1 or 0) and the probability that the class outputs class k (weighted by the
value of the input x; corresponding to the ith element of the weight vector for class k.

OLck .
— (yr— JR)X, 28
W, (Ve — V)X (28)

- The rest of the procedure for training multinomial LR is the same as for binary LR.
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Questions?

Homework 1 due Sun, Sep 17

56



