CS 2731 Introduction to Natural Language Processing

Session 9: Feedforward neural networks

Michael Miller Yoder
September 25, 2023

University of
Pittsbyurgh School of Computing and Information

Course logistics

e Homework 2 has been released. Is due Thu 10-05, 11:59pm
Written and programming components
Politeness classification
o We will run your code on a held-out test set
o 5 bonus points for best logistic regression system
o 5 bonus points for best neural network system
e Projects
o Get feedback and discuss projects in in-person meetings (required)

o Available time slots:
m Mon 10-02, 1Mam-1pm with Pantho in Sennott Square 5106
m Tue 10-03, 1-4pm with Michael in Sennott Square 6505
m Wed 10-04, 11am-12:30pm with Pantho in Sennott Square 5106

o Or come to our office hours
m Wed 1:30-2:30pm with Michael in Sennott Square 6505
m Thu 2:45-3:45pm with Pantho in Sennott Square 5106

o Proposal and literature review is due Thu 10-12, 11:59pm
m Instructions are on the project webpage
o It's good to start the literature review early
o Look for NLP papers in ACL Anthology, Semantic Scholar, and Google Scholar

o O

https://michaelmilleryoder.github.io/cs2731_fall2023/hw2
https://michaelmilleryoder.github.io/cs2731_fall2023/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833

Lecture overview: feedforward neural networks

e Neural network fundamentals

e Non-linear activation functions

e Linear algebra review

e Feedforward neural networks as classifiers

e Training feedforward neural networks (backpropagation)

Neural network fundamentals

This is in your brain

Cell body

Axon Telodendria

Nucleus

b2, # Axon hilm Synaptic terminals
== \ &) < V-ﬁ — —

—

Golgi apparatus

Endoplasmic
reticulum

Pa\
Mitochondrion \\ \ Dendrite

/ % Dendritic branches

By BruceBlaus - Own work, CC BY 3.0,
slide adapted from Jurafsky & Martin https://commons.wikimedia.org/w/index.php?curid=28761830

Neural Network Unit: This is not in your brain

Output value y

Non-linear transform

Welghted sum

Weights w,
Input layer X X, X3

Slide adapted from Jurafsky & Martin

The Variables in Our Very Important Formula

x A vector of features of n dimensions (like number of positive sentiment
words, length of document, etc.)

w A vector of weights of n dimensions specifying how discriminative each
feature Is

b A scalar bias term that shifts z
z The raw score

y A random variable (e.g, y = 1 means positive sentiment and y = 0 means
negative sentiment

Slide adapted from David Mortensen

The Fundamentals

The fundamental equation that describes a unit of a neural network should look very
familiar:

Z:b—f-ZW,'X,‘ (1)

Which we will represent as
Z=w-x+b (2)

But we do not use z directly. Instead, we pass it through a non-linear function, like the

sigmoid function:
1

T 1+e? G)

(which has some nice properties even though, in practice, we will prefer other functions
like tanh and RelU).

y=0a(2)

Slide adapted from David Mortensen

A Unit Illustrated

X1

W1

Wo Z a
X2 b3 o y
X3

Take, for example, a scenario in which our unit has the weights [0, 0.4, 0.2] and the bias
term 0.4 and the input vector x has the values [0.3, 0.2, 0.9].

Slide adapted from David Mortensen

Filling in the Input Values and Weights

10
Slide adapted from David Mortensen

Multiplying the Input Values and Weights and Summing Them (with the Bias Term)

0.3

\
0.4 0.69 a

0.2 3 y O y

%

0.9

Z = XiW1 + XoWs 4+ X3W3 + b = 0.1(0.3) + 0.4(0.2) + 0.2(0.9) + 0.4 = 0.69 (4)

"
Slide adapted from David Mortensen

Applying the Activation Function (Sigmoid)

1

12
Slide adapted from David Mortensen

Non-linear activation functions

13

Non-Linear Activation Functions

We're already seen the sigmoid for logistic

regression:
Sigmold L y=1/(1+e?)
1 y
y—s(z)—1+e_z |

00g s —4 2

14
Slide adapted from Jurafsky & Martin

Non-Linear Activation Functions besides sigmoid

1.0
_eg-e”’
_ 0.5 y eZ+ e_z
E 0.0
Il
>
-0.5
—1.075 =5 0
tanh

Slide adapted from Jurafsky & Martin

10

Most Common:

10
y = max(z 0)
5
=]
Nt
X0
S
g
-5
~10/5 -5 0 5 10

RelLU
Rectified Linear Unit

A little linear algebra

16

So Far, We Have Assume You Know Dot Products

a—= (01702703)
b — (bly b27 b3)
a-b=a;b; + aybs + asbs

17
Slide adapted from David Mortensen

Now, You Need to Multiply Matrices

A matrix Is an array of numbers

6 4 24
| -9 8

Two rows, three columns.

18
Slide adapted from David Mortensen

It's Easy to Multiple a Matrix by a Scalar

Slide adapted from David Mortensen

D 2
31

(9.5 2.9

48 21

N
2 4

19

Multiplying Matrices by Matrices Is Slightly Trickier

Let a; and a, be the row vectors of matrix A and b; and by be the column vectors of a
matrix B. Find C = AB

j I . 3 3 - Ol'bl Cll'bg - 38 17
2 4 5 2| | ay-b;y ay-by | | 26 14

A must have the same number of rows as B has columns.

20
Slide adapted from David Mortensen

Multiplying a Matrix by a Vector Is Roughly the Same

Multiplying a matrix by a vector is like multiply a matrix by a matrix with one column:

abc X _ax+by+cz-
def y| = [dx + ey + fz
g hi Z gx + hy + iz

The result is a vector.

21
Slide adapted from David Mortensen

Matrix multiplication is not hard but
inference with neural nets i1s mostly this
(plus some non-linear functions)

22

Feedforward neural networks

23

Adding multiple units to a neural network
Increases Its power to learn patterns in
data. Feedforward Neural Nets (FFNNs or
MLPs)

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for
historical reasons

25
Slide adapted from Jurafsky & Martin

The simplest FFNN Is just binary logistic
regression
(INPUT LAYER = feature vector)

26

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Output layer ' y=ocw-x+Db)
(0 node) (y is a
scalar)
w Wl Wn b (scalar)
(vector)

l
ol & @ @ @ @

Slide adapted from Jurafsky & Martin

27

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

y, A
Output layer ‘ ‘ ‘ y = softmax(Wx + b)
(softmax | y IS a vector
nodes)
W b
W is a b Is a vector
matrix

Input layer ‘ ‘ ‘ ‘ ‘

scalars

Slide adapted from Jurafsky & Martin

28

Softmax is a Generalization of Sigmoid

Softmax will show up multiple times in this class as a way of converting numbers into
probablities. For a vector z of dimensionality k, the softmax is:

softmax(z) = SXD(ZI) : SXp(ZQ) s EXD(Z”)
D im1 €XP(zi) i exp(zi) > i—1 exp(z;)
exp(z1)

softmax(z;) = I=1i=h

k
> =1 exp(z))
For example, if z=[0.6,1.1,—1.5,1.2,3.2, —1.1] then
softmax(x) = [0.055,0.090, 0.006, 0.099, 0.74, 0.010]

Slide adapted from David Mortensen

29

Probability distribution: a statistical
function describing all the possible
values/probabilities for a random variable
within a given range.

The real power comes when multiple
layers are added

31

Two-Layer Network with scalar output

Output layer ‘ y =0(z)yisascalar

(0 node) U z="Uh
hidden units ‘ ‘ ‘ h=oc(Wx+Db)
(0 node) i

W b Or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from Jurafsky & Martin

32

Two-Layer Network with scalar output

Output layer ‘ y =a(z)ylsascalar

(0 node) U z="Uh
hidden units ‘ h=oc(Wx+Db)
(0 node) Wji'~.

W b vector
Input layer
(vector) X @ x4

Slide adapted from Jurafsky & Martin

Two-Layer Network with scalar output

Output layer ‘ y =0(z)yisascalar

(0 node) U z="Uh
hidden units ‘ ‘ ‘ h=oc(Wx+Db)
(0 node) i

W b Or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from Jurafsky & Martin

34

Two-Layer Network with softmax output

% @ vy = softmax(z)

Output

layer U z=Uh
(0 node) V is a vector
hidden units ® O 0O r=0cWxt+b)
(0 node) i

W b

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from Jurafsky & Martin

35

Multi-layer Notation

y = a[z]
a[Z] — g[z](z[z]) sigmoid or softmax
Wil bl2] zI?l = wizlaltl + pl2!
‘ ‘ ‘ a[l] — g[l](z[l]) ReLU
1] — 1 0 1
W[l] b[l] 711 = wtlglol 4 pli]

@ ® 00 @ @~
36

Slide adapted from Jurafsky & Martin

A Forward Pass in Terms of Multi-Layer Notation

alol Wil
X1
W1
Wo 1] gl foreachicl.ndo
X2 B> o y 21— wlilgli-1] 4 plil
W3 all gl (A1)
end for
X3 V< q

37

Slide credit: David Mortensen

Replacing the bias unit

Instead of: We'll do this:

Slide adapted from Jurafsky & Martin 38

Feedforward neural nets as classifiers

39

Classification: Sentiment Analysis

We could do exactly what we did with logistic regression
Input layer are binary features as before

Output layer i1s 0 or 1
U

40
Slide adapted from Jurafsky & Martin

Sentiment Features

Var Definition

X1 count(positive lexicon) € doc)
xp count(negative lexicon) € doc)

{ 1 if “no” € doc

X .
. 0 otherwise

x4 count(lst and 2nd pronouns € doc)
{ 1 if “"” € doc

X .
5 0 otherwise

x¢ log(word count of doc)

41
Slide adapted from Jurafsky & Martin

Feedforward nets for simple classification

Logisti 2-layer
Rogls W feedforward
negressm network
fl f2 fn

: . o . foof f
Just adding a hidden layer to logistic regression 1 2 n
e allows the network to use non-linear interactions between

features

- which may (or may not) improve performance.

42
Slide adapted from Jurafsky & Martin

Even better: representation learning

The real power of deep learning comes from the
ability to learn features from the data

Instead of using hand-built human-engineered
features for classification

Use learned representations like embeddings!

43
Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

Hidden layer

Projection layer

embeddings
cmbedding for embedding for embedding for
word 534 word 23864 word 7
The dessert is
Slide adapted from Jurafsky & Martin w1 Wy \V3

L4

Issue: texts come in different sizes

(F& @ . 00 (F@ - @ <. 00 @@ @ .- 0@

!

embedding for embedding for embedding for

word 534 word 23864 word 7
This assumes a fixed size length (3)! | \The | de'ssen | is‘ |
Kind of unrealistic, Wi W) g

Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review
« |f shorter then pad with zero embeddings
« Truncate if you get longer reviews at test time
2. Create a single "sentence embedding" (the same dimensionality as a
word) to represent all the words
« Take the mean of all the word embeddings
« Take the element-wise max of all the word embeddings
* For each dimension, pick the max value from all words

Slide adapted from Jurafsky & Martin

45

Reminder: Multiclass Outputs

What if you have more than two output classes?
O Add more output units (one for each class)

O And use a “softmax layer”

softmax(z;) = - 1<i<D

46
Slide adapted from Jurafsky & Martin

Training feedforward neural networks

47

Intuition: training a 2-layer Network

} Loss function L(y, y)

Backward

* 3

Forward pass

Training instance

48
Slide adapted from Jurafsky & Martin

Remember stochastic gradient descent
from the logistic regression lecture—find
ogradient and optimize

Slide credit: David Mortensen

49

The Intuition Behind Training a 2-Layer Network

For every training tuple (x, y)

1. Run forward computation to find the estimate y

2. Run backward computation to update weights
- For every output node

- Compute the loss L between true y and estimated §
- For every weight w from the hidden layer to the output layer: update the weights

- For every hidden node

- Assess how much blame it deserves for the current answer
- From every weight w from the input layer to the hidden layer
-+ Update the weight

50

Slide credit: David Mortensen

Computing the gradient requires finding
the derivative of the loss with respect to
each weight In every layer of the network.
Error backpropagation through
computation graphs.

Slide credit: David Mortensen

Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to
weights % L(f(x;w),y)

To tell us how to adjust weights for each training item
> Move them in the opposite direction of the gradient

d
Wit = Wi — 11 Lee(f(x; W),)

> For logistic regression

aLCE (yvy)

Slide adapted from Jurafsky & Martin a W]

= [o(w-x+Db) —yx; .

Where did that derivative come from?

Using the chain rule! f(x) = u(v(x))

df du dv

Intuition (see the text for details) dx dv dx

Slide adapted from Jurafsky & Martin

+1

Derivative of the weighted sum

Derivative of the Activation

Derivative of the Loss

L 0L dy 0z
dw; 9y 9z dw;

53

How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!

What about deeper networks?

®* Lots of layers, different activation functions?
Solution:

® FEven more use of the chain rule!!

®* Computation graphs and error backpropagation!

54
Slide adapted from Jurafsky & Martin

Why Computation Graphs

For training, we need the derivative of the loss with respect to each weight
In every layer of the network

e But the loss Is computed only at the very end of the
network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

* Relies on computation graphs.

55
Slide adapted from Jurafsky & Martin

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

56
Slide adapted from Jurafsky & Martin

Example: L(aabac) — C(a+2b)

d = 240
Computations: e = atd
L

—

@\
@,_ .\ L—ce

C

Slide adapted from Jurafsky & Martin

57

Example:

Slide adapted from Jurafsky

L(a,b,c) = c(a+2b)

d = 2%b
Computations: e = a+d
i = ewe

forward pass

f
=35 B

58

Backwards differentiation in computation graphs

e The importance of the computation graph
comes from the backward pass

e This Is used to compute the derivatives that
we'll need for the weight update.

e How does a small change In that weight affect
the final loss?

59

Example L(“:

oL

We want:

b,c) = c(a+2b)

d = 24%b
e = a-+d
i, = ewxe

oL

The derivative g—,
affects L.

Slide adapted from Jurafsky & Martin

oL
550 of» and 5

tells us how much a small change in a

60

Computing the derivative of a composite function:

/() = u(v(x)) ﬁ du dv
dx dv dx

J (%) = u(v(w(x)))

d_f du dv dw
dx dv dw dx

61

Slide adapted from Jurafsky & Martin

Example
g = 2%b
e = a+d
i, = exe

L(a,b,c) = c(a+2b)

o
dc

L
da
L
ob

€

dL de

~ de da
dL de dd

~ de dd ob

62

oL JL de : JdL _ oL

a = 90 P 2T
a e oa ¢ ¢
Example % B %%% e=a+d %:1,%:1
— db Jedd b T
d=2b : —=2

Slide adapted from Jurafsky & Martin 63

Slide adapted from Jurafsky & Martin

6L

Backward differentiation on a two layer network

"
Sigmoid activation Z:
1
w2 12 ‘o
- z%
RelLU activation]
a. J

W[l] b[l]
y

Slide adapted from Jurafsky & Martin 1 2

65

Backward differentiation on a two layer network

al!/ = ReLU(z!!) dReLU(z) { 0 for z<0
dz 1 for z>0

a“l = G(Z[z]) d;iz)=0(z)(1—<’(z))
2

Backward differentiation on a two layer network

dReLU() 0 for z<0
|1 forz=0

dRCLU(Z) B 0 fOI" 7 < 0 by
dz |l 1 for z>0

67

For training, we need the derivative of the loss with
respect to weights in early layers of the network

« But loss I1s computed only at the very end of the
network!

Solution: backpropagation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the
derivative of the loss with respect to these early weights.

68

Questions?

69

