
CS 2731 Introduction to Natural Language Processing
Session 9: Feedforward neural networks

Michael Miller Yoder
September 25, 2023

1

● Homework 2 has been released. Is due Thu 10-05, 11:59pm
○ Written and programming components
○ Politeness classification
○ We will run your code on a held-out test set
○ 5 bonus points for best logistic regression system
○ 5 bonus points for best neural network system

● Projects
○ Get feedback and discuss projects in in-person meetings (required)
○ Available time slots:

■ Mon 10-02, 11am-1pm with Pantho in Sennott Square 5106
■ Tue 10-03, 1-4pm with Michael in Sennott Square 6505
■ Wed 10-04, 11am-12:30pm with Pantho in Sennott Square 5106

○ Or come to our office hours
■ Wed 1:30-2:30pm with Michael in Sennott Square 6505
■ Thu 2:45-3:45pm with Pantho in Sennott Square 5106

○ Proposal and literature review is due Thu 10-12, 11:59pm
■ Instructions are on the project webpage

○ It’s good to start the literature review early
○ Look for NLP papers in ACL Anthology, Semantic Scholar, and Google Scholar

2

Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2023/hw2
https://michaelmilleryoder.github.io/cs2731_fall2023/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833

● Neural network fundamentals

● Non-linear activation functions

● Linear algebra review

● Feedforward neural networks as classifiers

● Training feedforward neural networks (backpropagation)

3

Lecture overview: feedforward neural networks

4

Neural network fundamentals

5
By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830Slide adapted from Jurafsky & Martin

This is in your brain

6

Weights

Input layer

Weighted sum

Non-linear transform

Output value

bia
s

Neural Network Unit: This is not in your brain

Slide adapted from Jurafsky & Martin

7
Slide adapted from David Mortensen

8
Slide adapted from David Mortensen

9
Slide adapted from David Mortensen

10
Slide adapted from David Mortensen

11
Slide adapted from David Mortensen

12
Slide adapted from David Mortensen

13

Non-linear activation functions

14

Sigmoid

We're already seen the sigmoid for logistic
regression:

Non-Linear Activation Functions

Slide adapted from Jurafsky & Martin

15

tanh ReLU
Rectified Linear Unit

Most Common:

Non-Linear Activation Functions besides sigmoid

Slide adapted from Jurafsky & Martin

16

A little linear algebra

17
Slide adapted from David Mortensen

18
Slide adapted from David Mortensen

19
Slide adapted from David Mortensen

20
Slide adapted from David Mortensen

21
Slide adapted from David Mortensen

22
Slide adapted from David Mortensen

23

Feedforward neural networks

24
Slide adapted from David Mortensen

Can also be called multi-layer perceptrons (or MLPs) for
historical reasons

Slide adapted from Jurafsky & Martin
25

Feedforward Neural Networks

26
Slide adapted from David Mortensen

27

w

xn
x1

+1

w1 wn b

(y is a
scalar)

σOutput layer
(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)

Binary Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin

28

W

xnx1

Fully connected single layer network

W is a
matrix

+1

y is a vector

y1 yn

b is a vector
b

s s sOutput layer
(softmax
nodes)

Input layer
scalars

Multinomial Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin

29
Slide adapted from David Mortensen

30
Slide adapted from David Mortensen

31
Slide adapted from David Mortensen

U

W

x
n

x
1

+1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be
ReLU
Or tanh

Slide adapted from Jurafsky & Martin
32

Two-Layer Network with scalar output

U

W

x
n

x
1

+1

b

i

j
Wji

vector

Slide adapted from Jurafsky & Martin 33

Two-Layer Network with scalar output

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

y is a scalar

U

W

x
n

x
1

+1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be
ReLU
Or tanh

Slide adapted from Jurafsky & Martin
34

Two-Layer Network with scalar output

U

W

x
n

x
1

+1

b

hidden units
(σ node)

Input layer
(vector)

Output
layer
(σ node)

Could be
ReLU
Or tanh

y is a vector

Slide adapted from Jurafsky & Martin
35

Two-Layer Network with softmax output

W[1]

x
n

x
1

+1

b[1]

i

j

W[2]
b[2]

sigmoid or softmax

ReLU

Slide adapted from Jurafsky & Martin
36

Multi-layer Notation

37
Slide credit: David Mortensen

Replacing the bias unit

Instead of: We'll do this:

Slide adapted from Jurafsky & Martin 38

39

Feedforward neural nets as classifiers

We could do exactly what we did with logistic regression
Input layer are binary features as before
Output layer is 0 or 1

U

W

x
n

x
1

σ

Slide adapted from Jurafsky & Martin
40

Classification: Sentiment Analysis

41
Slide adapted from Jurafsky & Martin

Sentiment Features

Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between

features
• which may (or may not) improve performance.

42

U

W

x
n

x
1

f
1 f

2
f

n

W

x
n

x
1

f
1 f

2
f

n

Logistic
Regressio
n

2-layer
feedforward
network

σσ

Slide adapted from Jurafsky & Martin

Feedforward nets for simple classification

The real power of deep learning comes from the
ability to learn features from the data
Instead of using hand-built human-engineered
features for classification
Use learned representations like embeddings!

43

U

W

x
n

x
1

e
1 e

2
e

n

σ

Slide adapted from Jurafsky & Martin

Even better: representation learning

44
Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!

This assumes a fixed size length (3)!
Kind of unrealistic.
Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review

• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a
word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words
45

Slide adapted from Jurafsky & Martin

Issue: texts come in different sizes

What if you have more than two output classes?
○ Add more output units (one for each class)
○ And use a “softmax layer”

46

U

W

x
nx

1

Slide adapted from Jurafsky & Martin

Reminder: Multiclass Outputs

47

Training feedforward neural networks

48

U

W

x
nx

1

Training instance

Forward pass

Backward
pass

Slide adapted from Jurafsky & Martin

Intuition: training a 2-layer Network

49
Slide credit: David Mortensen

50
Slide credit: David Mortensen

51
Slide credit: David Mortensen

Slide adapted from Jurafsky & Martin
52

Reminder: gradient descent for weight updates

Using the chain rule! f (x) = u(v(x))
Intuition (see the text for details)

53

Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

Slide adapted from Jurafsky & Martin

Where did that derivative come from?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!
What about deeper networks?

• Lots of layers, different activation functions?
Solution:

• Even more use of the chain rule!!

• Computation graphs and error backpropagation!

54
Slide adapted from Jurafsky & Martin

How can I find that gradient for every weight in the network?

For training, we need the derivative of the loss with respect to each weight
in every layer of the network

• But the loss is computed only at the very end of the
network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

• Relies on computation graphs.

55
Slide adapted from Jurafsky & Martin

Why Computation Graphs

A computation graph represents the process of
computing a mathematical expression

56
Slide adapted from Jurafsky & Martin

Computation Graphs

Example:

57

Computations:

Slide adapted from Jurafsky & Martin

58Slide adapted from Jurafsky & Martin

Example:

Computations:

● The importance of the computation graph
comes from the backward pass

● This is used to compute the derivatives that
we’ll need for the weight update.

● How does a small change in that weight affect
the final loss?

Slide adapted from Jurafsky & Martin
59

Backwards differentiation in computation graphs

Example

60

We want:

Slide adapted from Jurafsky & Martin

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))

Slide adapted from Jurafsky & Martin
61

The chain rule

62Slide adapted from Jurafsky & Martin

Example

63Slide adapted from Jurafsky & Martin

Example

64Slide adapted from Jurafsky & Martin

Example

65

σ

W[2]

W[1]

y

x
2

x
1

Sigmoid activation

ReLU activation

1

1

b[1]

b[2]

Slide adapted from Jurafsky & Martin

Backward differentiation on a two layer network

66Slide adapted from Jurafsky & Martin

Backward differentiation on a two layer network

67

Backward differentiation on a two layer network

For training, we need the derivative of the loss with
respect to weights in early layers of the network
• But loss is computed only at the very end of the

network!
Solution: backpropagation
Given a computation graph and the derivatives of all the
functions in it we can automatically compute the
derivative of the loss with respect to these early weights.

68

Summary

69

Questions?

