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● Homework 2 has been released. Is due Thu 10-05, 11:59pm
○ Written and programming components
○ Politeness classification
○ We will run your code on a held-out test set
○ 5 bonus points for best logistic regression system
○ 5 bonus points for best neural network system

● Projects
○ Get feedback and discuss projects in in-person meetings (required)
○ Available time slots:

■ Mon 10-02, 11am-1pm with Pantho in Sennott Square 5106
■ Tue 10-03, 1-4pm with Michael in Sennott Square 6505
■ Wed 10-04, 11am-12:30pm with Pantho in Sennott Square 5106

○ Or come to our office hours
■ Wed 1:30-2:30pm with Michael in Sennott Square 6505
■ Thu 2:45-3:45pm with Pantho in Sennott Square 5106

○ Proposal and literature review is due Thu 10-12, 11:59pm
■ Instructions are on the project webpage

○ It’s good to start the literature review early
○ Look for NLP papers in ACL Anthology, Semantic Scholar, and Google Scholar
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Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2023/hw2
https://michaelmilleryoder.github.io/cs2731_fall2023/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833


● Neural network fundamentals

● Non-linear activation functions

● Linear algebra review

● Feedforward neural networks as classifiers

● Training feedforward neural networks (backpropagation)
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Lecture overview: feedforward neural networks
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Neural network fundamentals
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By BruceBlaus - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=28761830Slide adapted from Jurafsky & Martin

This is in your brain
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Neural Network Unit: This is not in your brain

Slide adapted from Jurafsky & Martin
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Non-linear activation functions
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Sigmoid

We're already seen the sigmoid for logistic 
regression:

Non-Linear Activation Functions

Slide adapted from Jurafsky & Martin
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tanh ReLU
Rectified Linear Unit

Most Common:

Non-Linear Activation Functions besides sigmoid

Slide adapted from Jurafsky & Martin
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A little linear algebra
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Feedforward neural networks
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Slide adapted from David Mortensen



Can also be called multi-layer perceptrons (or MLPs)  for 
historical reasons

Slide adapted from Jurafsky & Martin
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Feedforward Neural Networks
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Slide adapted from David Mortensen
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Binary Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin
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Multinomial Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen



31
Slide adapted from David Mortensen
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Slide adapted from Jurafsky & Martin
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Two-Layer Network with scalar output
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Slide adapted from Jurafsky & Martin 33

Two-Layer Network with scalar output
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Slide adapted from Jurafsky & Martin
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Two-Layer Network with scalar output
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Slide adapted from Jurafsky & Martin
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Two-Layer Network with softmax output
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Slide adapted from Jurafsky & Martin
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Multi-layer Notation
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Slide credit: David Mortensen



Replacing the bias unit

Instead of: We'll do this:

Slide adapted from Jurafsky & Martin 38
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Feedforward neural nets as classifiers



We could do exactly what we did with logistic regression
Input layer are binary features as before
Output layer is 0 or 1
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Slide adapted from Jurafsky & Martin
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Classification: Sentiment Analysis
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Slide adapted from Jurafsky & Martin

Sentiment Features



Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between 

features 
• which may (or may not) improve performance.
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Slide adapted from Jurafsky & Martin

Feedforward nets for simple classification



The real power of deep learning comes from the 
ability to learn features from the data
Instead of using hand-built human-engineered 
features for classification
Use learned representations like embeddings!
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Slide adapted from Jurafsky & Martin

Even better: representation learning
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Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!



This assumes a fixed size length (3)!  
Kind of unrealistic.   
Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review

• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a 
word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words
45

Slide adapted from Jurafsky & Martin

Issue: texts come in different sizes



What if you have more than two output classes?
○ Add more output units (one for each class)
○ And use a “softmax layer”
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Slide adapted from Jurafsky & Martin

Reminder: Multiclass Outputs
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Training feedforward neural networks
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Slide adapted from Jurafsky & Martin

Intuition: training a 2-layer Network
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



 

Slide adapted from Jurafsky & Martin
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Reminder: gradient descent for weight updates



Using the chain rule!   f (x) = u(v(x)) 
Intuition (see the text for details)
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Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

 

Slide adapted from Jurafsky & Martin

Where did that derivative come from?



These derivatives on the prior slide only give the updates for one weight 
layer: the last one! 
What about deeper networks?

• Lots of layers, different activation functions?
Solution:

• Even more use of the chain rule!! 

• Computation graphs and error backpropagation!
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Slide adapted from Jurafsky & Martin

How can I find that gradient for every weight in the network?



For training, we need the derivative of the loss with respect to each weight 
in every layer of the network 

• But the loss is computed only at the very end of the 
network! 

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986) 

• Relies on computation graphs. 
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Slide adapted from Jurafsky & Martin

Why Computation Graphs



A computation graph represents the process of 
computing a mathematical expression
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Slide adapted from Jurafsky & Martin

Computation Graphs



Example: 
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Computations:

Slide adapted from Jurafsky & Martin



58Slide adapted from Jurafsky & Martin

Example: 

Computations:



● The importance of the computation graph 
comes from the backward pass

● This is used to compute the derivatives that 
we’ll need for the weight update. 

● How does a small change in that weight affect 
the final loss?

Slide adapted from Jurafsky & Martin
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Backwards differentiation in computation graphs



Example
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We want:

Slide adapted from Jurafsky & Martin



Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x))) 
 

Slide adapted from Jurafsky & Martin
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The chain rule



62Slide adapted from Jurafsky & Martin

Example



63Slide adapted from Jurafsky & Martin

Example



64Slide adapted from Jurafsky & Martin

Example
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Slide adapted from Jurafsky & Martin

Backward differentiation on a two layer network
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Backward differentiation on a two layer network
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Backward differentiation on a two layer network



For training, we need the derivative of the loss with 
respect to weights in early layers of the network 
• But loss is computed only at the very end of the 

network! 
Solution: backpropagation
Given a computation graph and the derivatives of all the 
functions in it we can automatically compute the 
derivative of the loss with respect to these early weights.
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Summary



69

Questions?


