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Course logistics

e Homework 2 is due this Thu Oct 3

o Text classification
o Written and programming components

o Optional Kaggle competition for best LR and NN deception classifiers


https://michaelmilleryoder.github.io/cs2731_fall2024/hw2

Course logistics

e Project groups have been formed
o If you want to change groups, let me know

o Please schedule a group meeting with me this week through my Bookings
link in person (preferred) or on Zoom

m What questions do you have about completing your project?

o My office will change on Tuesday to IS 604B
e Next project deliverable is the proposal and literature on Oct 17

o Instructions are on the project webpage

o It's good to start the literature review early

o Logklfor NLP papers in ACL Anthology, Semantic Scholar, and Google
Scholar



https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://michaelmilleryoder.github.io/cs2731_spring2024/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833

Lecture overview: N-gram language models part 2, RNNs part 1

e Sampling sentences from language models
e The problem of zeros

e Laplace smoothing

e Interpolation and backoff

e Neural language models

e RNN language modeling



Sampling sentences from
language models




The Shannon Visualization Method

e Choose a random bigram
(<s>, w) according to its <s> 1
probability L want
e Now choose a random fo eat
bigram (w, x) according to its cat Chinese
probability Chinese food

e And so on until we choose food </s>
</s> I want to eat Chinese food

want to

e Then string the words
together

Slide adapted from jurafsky & Martin



Approximating Shakespeare

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram  —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth: he is this palpable hit the King Henry. Live

2 king. Follow.
gram  —What means, sir. [ confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 "tis done.

gram  —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 greal banquet serv’d in;
gram  —[t cannot be but so.

Slide adapted from jurafsky & Martin



Not Shakespeare (no offense)

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram  point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram  Brazil on market conditions

Slide adapted from jurafsky & Martin



The problem of zeros

1



The Perils of Overfitting

N-grams only work well for word prediction if the test corpus looks
like the training corpus

- In real life, it often doesn't
- We need to train robust models that generalize!

+ One kind of generalization: Zeros!
- Things that don't ever occur In the training set but occur in the

test set
12

Slide credit: David Mortensen



N-grams in the test set that weren’t in the training set

Suppose our bigram LM, trained on Twitter, reads a document by the
philosopher Wittgenstein:
Whereof one cannot speak, thereof one must be silent.

This contains the bigrams: whereof one, one cannot, cannot speak,
speak [comma], [comma] thereof, thereof one, one must, must be, be

silent.

Suppose “whereof one” never occurs in the training corpus (train)
but whereof occurs 20 times. According to MLE, it's probability is

c(whereof, one 0
P(one|whereof) = (c(whereof) ) =50 = 0

The probability of the sentence is the product of the probabilities of
the bigrams. What happens if one of the probabilities is zero?

Slide credit: David Mortensen 13



Two kinds of “zeros”

1. Completely unseen words in the test set
2. Words In unseen contexts in the test set

1%



Unknown Words

If we know all the words in advanced

- Vocabulary V is fixed
- Closed vocabulary task

Often we don't know this

- Out Of Vocabulary = OOV words
- Open vocabulary task

Instead: create an unknown word token <UNK>

- Training of <UNK> probabilities
- Create a fixed lexicon L of size V

- At text normalization phase, any training word not in L changed
to <UNK>

- Now we train its probabilities like a normal word

- At decoding time

- If text input: Use UNK probabilities for any word not in training

Slide credit: David Mortensen 15



Laplace smoothing
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The intuition of smoothing

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total
Steal probability mass to generalize better

attack
man
outcome

P(w | denied the)
2.5 allegations

1.5 reports
0.5 claims < o
.0 =
0.5 request = @ = o
2 other ol s s < S
= o o % = 1) >
£ g -
Slide adapted from jurafsky & 7 tOtal © 8 3 g [ © ][ E ] 1 ° ] V7
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Laplace smoothing: Pretending that we saw each word once more

C(Wf lawf)

MLE estimate Puie(w;|wi_;) =

Add-1 estimate Pagq_1 (Wilwi_1) =

Where V is the vocabulary of the corpus.

18

Slide credit: David Mortensen



Laplace Smooth Is too Blunt

It shifts too much probability mass away from attested ngrams and
onto unattested ngrams, so it isn't used much for ngram LMs any
more (there are better methods).

But remember that is does work:

- For text classification

- In domains where the number of zeros isn't as large as with
ngrams

Slide credit: David Mortensen 19



Interpolation and backoff

20



Backoff and Interpolation Let You Use Less Context

Suppose you have a context you don't know much about (because
you have seen few or no relevant ngrams). You can condition your
probabilities for these contexts on shorter contexts you know more
about.

Backoff Use trigram if you have good evidence, otherwise
bigram, otherwise unigram.

Interpolation Mix unigrams, bigrams, and trigrams together in one
(weighted) probability soup.

Interpolation works better; backoff is sometimes cheaper.

Slide credit: David Mortensen
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Linear interpolation takes into account different n-grams

The simplest way to do this is to not take context into account. The
lambdas, in the following formula, are weighting factors:

P(Wn|Wn_aWn_1) =A1P(Wn|Wn_aWn_1)
+ )\3P(Wn)

where

n
Vi/\,‘ZO/\Z)\,‘Zl
]

That is, the lambdas must sum to one. Stide credit: David Mortensen 22



Lambdas Are Tuned Using a Held-Out dev Set

train dev test

Choose \s to maximize the probability of held-out data (dev):

- Fix the ngram probabilities (on train)

- Then search for As that give the largest probability to dev:

23

Slide credit: David Mortensen



Web-Scale Ngrams

How to deal with, e.g., Google N-gram corpus Pruning

- Only store N-grams with count > threshold.
- Remove singletons of higher-order n-grams

- Entropy-based pruning
Efficiency

- Efficient data structures like tries

- Bloom filters: approximate language models

- Store words as indexes, not strings

- Use Huffman coding to fit large numbers of words into two bytes

- Quantize probabilities (4-8 bits instead of 8-byte float)

Slide credit: David Mortensen 24



Stupid Backoff is Stupid but Efficient

No discounting, just use relative frequencies

| [ C( : k1)
S(WJ|W::;+1) = { (W, = fe+1)

|0.4S(w;|wi—,,) otherwise

if c(w;_ h+1)>0

c(w;)

S(w;) = N

Slide credit: David Mortensen 25



Neural language models
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Why Neural LMs work better than N-gram LMs

Training data:

We've seen: | have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:

| forgot to make sure that the dog gets ___
N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize
and predict “fed” after dog

27
Slide adapted from jurafsky & Martin



Language modeling with
recurrent neural networks (RNNs)

28



Reminder: training a 2-layer network

} Loss function L(¥, y)

Backward

* =t

Forward pass

Training instance

29
Slide adapted from jurafsky & Martin



There are Two Benefits to Training a Neural Language Model

If you train a neural language model, you get two things:

1. An algorithm that will allow you to predict the next word in a sequence

2. A set of embeddings E that can be used to represent words in other tasks
(assuming that you did not freeze the embedding layer)

30

Slide credit: David Mortensen



FFNNs take an |

nput of fixed

dimensions—a fixed number of features, a

fixed number o

" tokens

31



The number tokens in a text—even a
sentence—can be arbitrarily large (or
short)

Slide credit: David Mortensen



RNNs help us address this issue

Slide credit: David Mortensen



The architecture of an RNN

e Special kind of multilayer neural network for modeling sequences
e Hidden layers between the input and output receive input not just

form the input layer, but also from the hidden layer at a preceding
timestep

e RNNs can “remember” information from earlier on

.V
W ]

_— ‘\\ y 9 7
Unfold === A A A -
U U U U

X 3 2 x

34
Slide credit: David Mortensen



An RNN Language Model

0.3 refuse
0.2 accept
~ t) _ (1) [V 0.1 take
y( = softmax(Uh*™ + by) € R 0.1 understand
h(0) K1) h(2) H(3) h(#) h(5) h(6) h(7) h(8)
hidden states @ m ﬂ [3| m Iil m 0
h® = oWphED 4+ Wee® + by) : >= :: ~: :: >: : :
h(9) is the initial hidden state o " g " e Wh g W H Whole " lg Y e W
WQ We We We WE’
. )
word embeddings e() o2 @O o(3) ol4) (5 e(6) e(?) e(®
o) — Ey(D) @
)
A
‘[E E TE ‘[E WE
one-hot vectors I'm gonna make him an offer he can't
X([) c R|V| xU) x(2) X(3) X(‘{*) X(S) x(ﬁ) x(?) X(S)

Slide credit: David Mortensen
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Training an RNN Language Model

- Get a big corpus of text, which is a sequence of words x(V, ..., x(7)
- Feed it into the RNN-LM, computing output distribution () for every step t.

- Loss function on step t Is cross-entropy between the predicted probability
distribution ¥ and the true next word y (one-hot for x(tt1);

JO@0) = CE(y®, §0) = =Yyl log 9 = — log 95,

weV

- Average this to get overall loss for the entire training set:
~ (1)
Zj(t (9 T Z )(<t+1

36

Slide credit: David Mortensen



Training an RNN Language Model
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Training an RNN Language Model
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Computing Loss and Gradients in Practice

- In principle, we could compute loss and gradients across the whole corpus
(x(M, ..., x(D) but that would be incredibly expensive!

T
(6) = =3 J6)
t=1

- Instead, we usually treat X, ... x() as a document, or even a sentence

- This works much better with Stochastic Gradient Descent, which lets us
compute loss and gradients for little chunks and update as we go.

- Actually, we do this in batches: compute J(#) for a batch of sentences; update

weights; repeat.

39

Slide credit: David Mortensen



We Will Skip the Details of Backpropogation in RNNs for Now

- The fact that training RNNs involves backpropagation over timesteps,
summing as you go, means that it (the backpropagation through time
algorithm) is a bit more complicated than backpropagation in feedforward
neural networks.

- We will skip these details for now, but you will want to learn them if you are
doing serious work with RNNs.

40

Slide credit: David Mortensen



Generation with RNN LMs

e At each time step t, we sample w, from P(W,]| ... ), and feed it to the
next timestep!
e LM with this kind of generation process Is called autoregressive LM

Sample wy Sample w,

AN
. ]
ho | hy .

A Beginning-of-sentence

(BOS) token 41
Slide adapted from Tianxing He
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