

http://www.youtube.com/watch?v=5XHCM7t1fkc

CS 2731 / ISSP 2230
Introduction to Natural Language Processing

Session 10: N-gram language models part 2, RNNs part 1

Michael Miller Yoder
September 30, 2024

University of
Pittsb};lrgh School of Computing and Information

Course logistics

e Homework 2 is due this Thu Oct 3

o Text classification
o Written and programming components

o Optional Kaggle competition for best LR and NN deception classifiers

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2

Course logistics

e Project groups have been formed
o If you want to change groups, let me know

o Please schedule a group meeting with me this week through my Bookings
link in person (preferred) or on Zoom

m What questions do you have about completing your project?

o My office will change on Tuesday to IS 604B
e Next project deliverable is the proposal and literature on Oct 17

o Instructions are on the project webpage

o It's good to start the literature review early

o Logklfor NLP papers in ACL Anthology, Semantic Scholar, and Google
Scholar

https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://michaelmilleryoder.github.io/cs2731_spring2024/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833

Lecture overview: N-gram language models part 2, RNNs part 1

e Sampling sentences from language models
e The problem of zeros

e Laplace smoothing

e Interpolation and backoff

e Neural language models

e RNN language modeling

Sampling sentences from
language models

The Shannon Visualization Method

e Choose a random bigram
(<s>, w) according to its <s> 1
probability L want
e Now choose a random fo eat
bigram (w, x) according to its cat Chinese
probability Chinese food

e And so on until we choose food </s>
</s> I want to eat Chinese food

want to

e Then string the words
together

Slide adapted from jurafsky & Martin

Approximating Shakespeare

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth: he is this palpable hit the King Henry. Live

2 king. Follow.
gram —What means, sir. [confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 "tis done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 greal banquet serv’d in;
gram —[t cannot be but so.

Slide adapted from jurafsky & Martin

Not Shakespeare (no offense)

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

Slide adapted from jurafsky & Martin

The problem of zeros

1

The Perils of Overfitting

N-grams only work well for word prediction if the test corpus looks
like the training corpus

- In real life, it often doesn't
- We need to train robust models that generalize!

+ One kind of generalization: Zeros!
- Things that don't ever occur In the training set but occur in the

test set
12

Slide credit: David Mortensen

N-grams in the test set that weren’t in the training set

Suppose our bigram LM, trained on Twitter, reads a document by the
philosopher Wittgenstein:
Whereof one cannot speak, thereof one must be silent.

This contains the bigrams: whereof one, one cannot, cannot speak,
speak [comma], [comma] thereof, thereof one, one must, must be, be

silent.

Suppose “whereof one” never occurs in the training corpus (train)
but whereof occurs 20 times. According to MLE, it's probability is

c(whereof, one 0
P(one|whereof) = (c(whereof)) =50 = 0

The probability of the sentence is the product of the probabilities of
the bigrams. What happens if one of the probabilities is zero?

Slide credit: David Mortensen 13

Two kinds of “zeros”

1. Completely unseen words in the test set
2. Words In unseen contexts in the test set

1%

Unknown Words

If we know all the words in advanced

- Vocabulary V is fixed
- Closed vocabulary task

Often we don't know this

- Out Of Vocabulary = OOV words
- Open vocabulary task

Instead: create an unknown word token <UNK>

- Training of <UNK> probabilities
- Create a fixed lexicon L of size V

- At text normalization phase, any training word not in L changed
to <UNK>

- Now we train its probabilities like a normal word

- At decoding time

- If text input: Use UNK probabilities for any word not in training

Slide credit: David Mortensen 15

Laplace smoothing

16

The intuition of smoothing

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total
Steal probability mass to generalize better

attack
man
outcome

P(w | denied the)
2.5 allegations

1.5 reports
0.5 claims < o
.0 =
0.5 request = @ = o
2 other ol s s < S
= o o % = 1) >
£ g -
Slide adapted from jurafsky & 7 tOtal © 8 3 g [©][E] 1 °] V7

Martin, Dan Klein

Laplace smoothing: Pretending that we saw each word once more

C(Wf lawf)

MLE estimate Puie(w;|wi_;) =

Add-1 estimate Pagq_1 (Wilwi_1) =

Where V is the vocabulary of the corpus.

18

Slide credit: David Mortensen

Laplace Smooth Is too Blunt

It shifts too much probability mass away from attested ngrams and
onto unattested ngrams, so it isn't used much for ngram LMs any
more (there are better methods).

But remember that is does work:

- For text classification

- In domains where the number of zeros isn't as large as with
ngrams

Slide credit: David Mortensen 19

Interpolation and backoff

20

Backoff and Interpolation Let You Use Less Context

Suppose you have a context you don't know much about (because
you have seen few or no relevant ngrams). You can condition your
probabilities for these contexts on shorter contexts you know more
about.

Backoff Use trigram if you have good evidence, otherwise
bigram, otherwise unigram.

Interpolation Mix unigrams, bigrams, and trigrams together in one
(weighted) probability soup.

Interpolation works better; backoff is sometimes cheaper.

Slide credit: David Mortensen

21

Linear interpolation takes into account different n-grams

The simplest way to do this is to not take context into account. The
lambdas, in the following formula, are weighting factors:

P(Wn|Wn_aWn_1) =A1P(Wn|Wn_aWn_1)
+)\3P(Wn)

where

n
Vi/\,‘ZO/\Z)\,‘Zl
]

That is, the lambdas must sum to one. Stide credit: David Mortensen 22

Lambdas Are Tuned Using a Held-Out dev Set

train dev test

Choose \s to maximize the probability of held-out data (dev):

- Fix the ngram probabilities (on train)

- Then search for As that give the largest probability to dev:

23

Slide credit: David Mortensen

Web-Scale Ngrams

How to deal with, e.g., Google N-gram corpus Pruning

- Only store N-grams with count > threshold.
- Remove singletons of higher-order n-grams

- Entropy-based pruning
Efficiency

- Efficient data structures like tries

- Bloom filters: approximate language models

- Store words as indexes, not strings

- Use Huffman coding to fit large numbers of words into two bytes

- Quantize probabilities (4-8 bits instead of 8-byte float)

Slide credit: David Mortensen 24

Stupid Backoff is Stupid but Efficient

No discounting, just use relative frequencies

| [C(: k1)
S(WJ|W::;+1) = { (W, = fe+1)

|0.4S(w;|wi—,,) otherwise

if c(w;_ h+1)>0

c(w;)

S(w;) = N

Slide credit: David Mortensen 25

Neural language models

26

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: | have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:

| forgot to make sure that the dog gets ___
N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize
and predict “fed” after dog

27
Slide adapted from jurafsky & Martin

Language modeling with
recurrent neural networks (RNNs)

28

Reminder: training a 2-layer network

} Loss function L(¥, y)

Backward

* =t

Forward pass

Training instance

29
Slide adapted from jurafsky & Martin

There are Two Benefits to Training a Neural Language Model

If you train a neural language model, you get two things:

1. An algorithm that will allow you to predict the next word in a sequence

2. A set of embeddings E that can be used to represent words in other tasks
(assuming that you did not freeze the embedding layer)

30

Slide credit: David Mortensen

FFNNs take an |

nput of fixed

dimensions—a fixed number of features, a

fixed number o

" tokens

31

The number tokens in a text—even a
sentence—can be arbitrarily large (or
short)

Slide credit: David Mortensen

RNNs help us address this issue

Slide credit: David Mortensen

The architecture of an RNN

e Special kind of multilayer neural network for modeling sequences
e Hidden layers between the input and output receive input not just

form the input layer, but also from the hidden layer at a preceding
timestep

e RNNs can “remember” information from earlier on

.V
W]

_— ‘\\ y 9 7
Unfold === A A A -
U U U U

X 3 2 x

34
Slide credit: David Mortensen

An RNN Language Model

0.3 refuse
0.2 accept
~ t) _ (1) [V 0.1 take
y(= softmax(Uh*™ + by) € R 0.1 understand
h(0) K1) h(2) H(3) h(#) h(5) h(6) h(7) h(8)
hidden states @ m ﬂ [3| m Iil m 0
h® = oWphED 4+ Wee® + by) : >= :: ~: :: >: : :
h(9) is the initial hidden state o " g " e Wh g W H Whole " lg Y e W
WQ We We We WE’
.)
word embeddings e() o2 @O o(3) ol4) (5 e(6) e(?) e(®
o) — Ey(D) @
)
A
‘[E E TE ‘[E WE
one-hot vectors I'm gonna make him an offer he can't
X([) c R|V| xU) x(2) X(3) X(‘{*) X(S) x(ﬁ) x(?) X(S)

Slide credit: David Mortensen

35

Training an RNN Language Model

- Get a big corpus of text, which is a sequence of words x(V, ..., x(7)
- Feed it into the RNN-LM, computing output distribution () for every step t.

- Loss function on step t Is cross-entropy between the predicted probability
distribution ¥ and the true next word y (one-hot for x(tt1);

JO@0) = CE(y®, §0) = =Yyl log 9 = — log 95,

weV

- Average this to get overall loss for the entire training set:
~ (1)
Zj(t (9 T Z)(<t+1

36

Slide credit: David Mortensen

Training an RNN Language Model

1(1}(9) ;(ZJ(Q) j(3)(9) j(‘*)(g)

A

4 i

]
(%]
—

>
—
w
—

]
—
o~
—

-
>
>
.
>
-
>

=
=
c
=

K] K@) h(4)

J

J

A 4

%—j;+ooookg%oooo
[oooo}ig{oooo
}?gﬁoooo

Y

}jg%oooo

@ @
e(l) e(2) PE el4)| @
@ @
e L
offer he can't
x(1) x(2) x(3) «(%)

37

Slide credit: David Mortensen

Training an RNN Language Model

‘I T
Moy + J@A) + 18 () + JB)(e) + --- =1(8) = }ZJUJ(G)
A h A A =1
9(1) 9(2) 9(3) 9(‘0
A 3 A A
U U] U
AL p@1 pG] pA)]

A 4

%—j;+ooookg%oooo
[0000}75{0000
kg{oooo

Y

}jg{oooo

@ @
e(1) e(2) Cle o4 e
@ @
L L
offer he can't
x(1) x(2) x(3) «(%)

38

Slide credit: David Mortensen

Computing Loss and Gradients in Practice

- In principle, we could compute loss and gradients across the whole corpus
(x(M, ..., x(D) but that would be incredibly expensive!

T
(6) = =3 J6)
t=1

- Instead, we usually treat X, ... x() as a document, or even a sentence

- This works much better with Stochastic Gradient Descent, which lets us
compute loss and gradients for little chunks and update as we go.

- Actually, we do this in batches: compute J(#) for a batch of sentences; update

weights; repeat.

39

Slide credit: David Mortensen

We Will Skip the Details of Backpropogation in RNNs for Now

- The fact that training RNNs involves backpropagation over timesteps,
summing as you go, means that it (the backpropagation through time
algorithm) is a bit more complicated than backpropagation in feedforward
neural networks.

- We will skip these details for now, but you will want to learn them if you are
doing serious work with RNNs.

40

Slide credit: David Mortensen

Generation with RNN LMs

e At each time step t, we sample w, from P(W,]| ...), and feed it to the
next timestep!
e LM with this kind of generation process Is called autoregressive LM

Sample wy Sample w,

AN
.]
ho | hy .

A Beginning-of-sentence

(BOS) token 41
Slide adapted from Tianxing He

	Slide 1
	Slide 2
	Slide 3: Course logistics
	Slide 4: Course logistics
	Slide 6: Lecture overview: N-gram language models part 2, RNNs part 1
	Slide 7: Sampling sentences from language models
	Slide 8: The Shannon Visualization Method
	Slide 9: Approximating Shakespeare
	Slide 10: Not Shakespeare (no offense)
	Slide 11: The problem of zeros
	Slide 12
	Slide 13: N-grams in the test set that weren’t in the training set
	Slide 14: Two kinds of “zeros”
	Slide 15
	Slide 16: Laplace smoothing
	Slide 17: The intuition of smoothing
	Slide 18: Laplace smoothing: Pretending that we saw each word once more
	Slide 19
	Slide 20: Interpolation and backoff
	Slide 21
	Slide 22: Linear interpolation takes into account different n-grams
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Neural language models
	Slide 27: Why Neural LMs work better than N-gram LMs
	Slide 28: Language modeling with recurrent neural networks (RNNs)
	Slide 29: Reminder: training a 2-layer network
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: The architecture of an RNN
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Generation with RNN LMs

