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Kevin King Doubletalk

Also known in Kevin's words as "Verbal Perception Manipulation", this is a great example of Kevin opening a corporate event. He's been introduced to the crowd as an expert on future trends and what it takes to be successful. The audience thinks they're in for some real insight toward attaining their financial goals. The truth is, the joke's on them...

http://www.youtube.com/watch?v=5XHCM7t1fkc


Session 10: N-gram language models part 2, RNNs part 1

Michael Miller Yoder

September 30, 2024
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CS 2731 / ISSP 2230
Introduction to Natural Language Processing



● Homework 2 is due this Thu Oct 3

○ Text classification

○ Written and programming components

○ Optional Kaggle competition for best LR and NN deception classifiers
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Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2


● Project groups have been formed

○ If you want to change groups, let me know

○ Please schedule a group meeting with me this week through my Bookings 
link in person (preferred) or on Zoom

■ What questions do you have about completing your project?

○ My office will change on Tuesday to IS 604B

● Next project deliverable is the proposal and literature on Oct 17

○ Instructions are on the project webpage

○ It’s good to start the literature review early

○ Look for NLP papers in ACL Anthology, Semantic Scholar, and Google 
Scholar
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Course logistics

https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://outlook-sdf.office.com/bookwithme/user/2536c861ee3f49ab9a4a872751754279@pitt.edu?anonymous&ep=plink
https://michaelmilleryoder.github.io/cs2731_spring2024/project
https://aclanthology.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833
https://scholar.google.com/?inst=3203679203499159833


● Sampling sentences from language models

● The problem of zeros

● Laplace smoothing

● Interpolation and backoff

● Neural language models

● RNN language modeling
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Lecture overview: N-gram language models part 2, RNNs part 1
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Sampling sentences from 
language models



● Choose a random bigram 
(<s>, w) according to its 
probability

● Now choose a random 
bigram (w, x) according to its 
probability

● And so on until we choose 
</s>

● Then string the words 
together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food
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The Shannon Visualization Method

Slide adapted from Jurafsky & Martin
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Approximating Shakespeare

Slide adapted from Jurafsky & Martin
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Not Shakespeare (no offense)

Slide adapted from Jurafsky & Martin
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The problem of zeros
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Slide credit: David Mortensen
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N-grams in the test set that weren’t in the training set

Slide credit: David Mortensen



1. Completely unseen words in the test set
2. Words in unseen contexts in the test set
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Two kinds of “zeros”



15Slide credit: David Mortensen
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Laplace smoothing



When we have sparse statistics:

Steal probability mass to generalize better
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Slide adapted from Jurafsky & 
Martin, Dan Klein
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The intuition of smoothing
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Laplace smoothing: Pretending that we saw each word once more 

Slide credit: David Mortensen



19Slide credit: David Mortensen
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Interpolation and backoff
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Slide credit: David Mortensen
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Linear interpolation takes into account different n-grams

Slide credit: David Mortensen
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Slide credit: David Mortensen



24Slide credit: David Mortensen



25Slide credit: David Mortensen
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Neural language models



Training data:

We've seen:  I have to make sure that the cat gets fed. 

Never seen:   dog gets fed

Test data:

I forgot to make sure that the dog gets ___

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize 
and predict “fed” after dog

Slide adapted from Jurafsky & Martin
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Why Neural LMs work better than N-gram LMs
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Language modeling with 
recurrent neural networks (RNNs)
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U

W

xnx1Training instance

Forward pass

Backward 
pass

Slide adapted from Jurafsky & Martin

Reminder: training a 2-layer network
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



● Special kind of multilayer neural network for modeling sequences
● Hidden layers between the input and output receive input not just 

form the input layer, but also from the hidden layer at a preceding 
timestep

● RNNs can “remember” information from earlier on
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The architecture of an RNN

Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen

Teacher forcing
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Slide credit: David Mortensen

Teacher forcing
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Slide credit: David Mortensen
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Slide credit: David Mortensen



● At each time step 𝑡, we sample 𝑤t from 𝑃(𝑊t| … ), and feed it to the 
next timestep!

● LM with this kind of generation process is called autoregressive LM
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Generation with RNN LMs

Slide adapted from Tianxing He
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