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CS 2731
Introduction to Natural Language Processing



● No class on Monday (Fall Break)

● Project proposal presentations next Wed Oct 16 during class
○ Aim for 7 min max presentations
○ There will be Q+A after each presentation
○ Add your slides here: Session 14 Project proposal presentations (CS 

2731 Fall 2024).pptx
○ Instructions are on the project webpage and in the slide deck

● Project proposal and literature review due next Thu Oct 17

○ Instructions are on the project webpage

● Homework 3 has been released. Is due Thu Oct 24
3

Course logistics

https://pitt-my.sharepoint.com/:p:/g/personal/mmyoder_pitt_edu/EZ-R5EtO8uBIiPfiAhdqOdYBSzH011O79AnfIODMJ0Q9qQ?e=VmKgkU
https://pitt-my.sharepoint.com/:p:/g/personal/mmyoder_pitt_edu/EZ-R5EtO8uBIiPfiAhdqOdYBSzH011O79AnfIODMJ0Q9qQ?e=VmKgkU
https://michaelmilleryoder.github.io/cs2731_spring2024/project
https://michaelmilleryoder.github.io/cs2731_fall2024/project.html
https://michaelmilleryoder.github.io/cs2731_fall2024/hw3


● What helps learning
○ Readings + lectures + quiz for review
○ Conversations/questions in class, visuals in slides

● What could be improved
○ More practical coding examples in class!

○ Lectures are theoretical and then homework assignments are all coding

○ Homework takes too long, especially if you aren’t familiar with ML 
packages and frameworks

○ What are transformers again? Textbook just provides piles of Greek letters

● What I will change
○ Add in more coding examples, especially to get people started on the 

homework assignments
○ Consider lightening homework 4

Midterm OMET survey results (~40% response rate)



● Intro to LLMs

● Pretraining and finetuning

● Pretraining 3 ways

○ Encoders (BERT)

○ Encoder-decoders (T5)

○ Decoders (GPT)

○ Sampling from decoder-only LLMs
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Lecture overview: LLMs, BERT & GPT
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Intro to large language models (LLMs): 
pretraining and finetuning



Large language models

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Slide adapted from Jurafsky and Martin



In contemporary NLP:

• All (or almost all) parameters in NLP networks are 
initialized via pretraining.

• Pretraining methods hide parts of the input from 
the model, and train the model to reconstruct those 
parts.

• This has been exceptionally effective at building 
strong:

• representations of language
• parameter initializations for strong NLP 
models
• probability distributions over language that 
we can sample from
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Pretraining whole models

Slide adapted from John Hewitt



• MIT is located in __________, Massachusetts.

• I put ___ fork down on the table.

• The woman walked across the street, checking for traffic over ___ shoulder.

• I went to the ocean to see the fish, turtles, seals, and _____.

• Overall, the value I got from the two hours watching it was the sum total of the 
popcorn and the drink. The movie was ___.

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered 
his destiny. Zuko left the ______.

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

9

What can we learn from reconstructing the input?

Slide adapted from John Hewitt



Pretraining can improve NLP applications by serving as parameter 
initialization.
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The pretraining + finetuning paradigm

Slide adapted from John Hewitt



● LLMs generally use subword tokenization

● Merges frequently seen sequences of characters together into tokens

● Repeat:
○ Choose the two symbols that are most frequently adjacent in the training 

corpus (say 'A', 'B') 

○ Add a new merged symbol 'AB' to the vocabulary

○ Replace every adjacent 'A' 'B' in the corpus with 'AB'. 

○ Until k merges have been done.

● Allows them to generalize to unseen words, handle misspelling, novel 
words
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A reminder: Byte Pair Encoding (BPE, Sennrich+ 2016)

Slide adapted from Jurafsky & Martin



Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude,       BERT family, Flan-T5, Whisper
Llama, Mixtral HuBERT

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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3 types of LLMs:
encoders, encoder-decoders, decoders



The neural architecture influences the type of pretraining and natural use cases

14

Pretraining for 3 types of architectures

• Gets bidirectional context – can condition on future!

• Good parts of decoders and encoders?

• Nice to generate from; can’t condition on future 
words

Slide adapted from John Hewitt
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Encoders (BERT)



Encoders

Many varieties!
• Popular: Masked Language Models 

(MLMs)
• BERT family
• Trained by predicting words from 

surrounding words on both sides
• Are usually finetuned (trained on 

supervised data) for classification 
tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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● So far, we’ve looked at language model pretraining. 
● But encoders can access to bidirectional context. 
● Let’s use it in training!
● BERT is pretrained with 2 objectives

○ Masked language modeling
○ Next sentence prediction

17

Pretraining encoders: what pretraining objective to use?

Slide adapted from John Hewitt
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



Some more details about Masked LM for BERT 
[Devlin et al. 2018]:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the 
time

• Replace input word with a random token 
10% of the time

• Leave input word unchanged 10% of the 
time (but still predict it!)

• Why? Doesn’t let the model get 
complacent and not build strong 
representations of non-masked words. 
(No masks are seen at fine-tuning 
time!)

21

BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt



Details about BERT

• Two models were released:
• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:
• BooksCorpus (800 million words)
• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.
• BERT was pretrained with 64 TPU chips for a total of 4 days.
• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU
• “Pretrain once, finetune many times.”

22

BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt



● BERT was massively popular and hugely versatile
● Finetuning BERT led to new state-of-the-art results on a broad range of 

tasks.

23

BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt

• QQP: Quora Question Pairs (detect 
paraphrase questions)
• QNLI: natural language inference over 
question answering data
• SST-2: sentiment analysis

• CoLA: corpus of linguistic acceptability (detect 
whether sentences are grammatical.)
• STS-B: semantic textual similarity
• MRPC: Microsoft paraphrase corpus
• RTE: a small natural language inference corpus



● Those results looked great! Why not used pretrained encoders for 
everything?

● If your task involves generating sequences, consider using a pretrained 
decoder; BERT and other pretrained encoders don’t naturally lead to nice 
autoregressive (1-word-at-a-time) generation methods.
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BERT: Bidirectional Encoder Representations from Transformers

Slide adapted from John Hewitt



You’ll see a lot of BERT variants like RoBERTa, SpanBERT, etc

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa [Liu et al. 2019]: mainly just train BERT for longer and remove next sentence prediction!
• SpanBERT [Joshi et al. 2020]: masking contiguous spans of words makes a harder, more useful 
pretraining task

25

Extensions of BERT

Slide adapted from John Hewitt
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Encoder-decoders (T5)



Encoder-Decoders

• Trained to map from one sequence 
to another

• Very popular for:
• machine translation (map from one 

language to another)

• speech recognition (map from 
acoustics to words)

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words
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Encoder-

Decoders
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Slide adapted from Jurafsky and Martin



What Raffel et al. 2020 found to work 
best was span corruption. Their model: 
T5.

Replace different-length spans from the 
input with unique placeholders; decode 
out the spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective that 
looks like language modeling at the 
decoder side

28

Pretraining encoder-decoders: what pretraining objective to use?

Slide adapted from John Hewitt



A fascinating property of 
T5: it can be finetuned to 
answer a wide range of 
questions, retrieving 
knowledge from its 
parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

29

Finetuned T5
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Decoders (GPT)



Decoder-only models

Also called:

• Causal LLMs

• Autoregressive LLMs

• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoder-only models can handle many tasks

● Many tasks can be turned into tasks of 
predicting words!

Slide adapted from Jurafsky and Martin



Conditional generation
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Generating 
text 
conditioned 
on previous 
text!



Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string:

The sentiment of the sentence "I like 

Jackie Chan" is:  

2. And see what word it thinks comes next:

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3
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Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechoose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like

Slide adapted from Jurafsky and Martin



● When using language model pretrained 
decoders for classification, we can ignore 
that they were trained to model 𝑝(𝑤𝑡|𝑤1:𝑡−1).

● We can finetune them by training a classifier 
on the last word’s hidden state.

35

Pretrained decoders for classification

● Where 𝐴 and 𝑏 are randomly initialized and 
specified by the downstream task.

● Gradients backpropagate through the whole 
network. 

Slide adapted from John Hewitt



Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:
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If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’ t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask
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Slide adapted from Jurafsky and Martin



Summarization
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Slide adapted from Jurafsky and Martin



LLMs for summarization (using  tl;dr)
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Slide adapted from Jurafsky and Martin



● 2018’s GPT was a big success in 
pretraining a decoder!

● Transformer decoder with 12 layers, 117M 
parameters.

● 768-dimensional hidden states, 3072-
dimensional feed-forward hidden layers.

● Byte-pair encoding with 40,000 merges
● Trained on BooksCorpus: over 7000 

unique books.
○ Contains long spans of contiguous text, 

for learning long-distance dependencies.
● The acronym “GPT” never showed up in 

the original paper; it could stand for 
“Generative PreTraining” or “Generative 
Pretrained Transformer”

39

Generative Pretrained Transformer (GPT; Radford et al. 2018)

Slide adapted from John Hewitt, David Mortensen



● They are basically larger and larger 
autoregressive transformer LMs trained 
on larger and larger amounts of data

● They have shown amazing language 
generation capability when you give it a 
prompt (aka. prefix, the beginning of a 
paragraph)

40

GPT-2, GPT-3, GPT-4 from OpenAI

Slide adapted from Tianxing He
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Generation example from the GPT-2 model

A sample from GPT2 (with top-k sampling)
Slide credit: Tianxing He
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Sampling for LLM generation



Decoding and Sampling

● This task of choosing a word to generate based on the model’s 
probabilities is called decoding. 

● The most common method for decoding in LLMs: sampling. 

● Sampling from a model’s distribution over words:

• choose random words according to their probability assigned by 
the model. 

●After each token we’ll sample words to generate according to 
their probability conditioned on our previous choices, 

• A transformer language model will give the probability



Random sampling



Random sampling doesn't work very well

● Even though random sampling mostly generate 
sensible, high-probable words, 

● There are many odd, low- probability words in the tail 
of the distribution 

● Each one is low- probability but added up they 
constitute a large portion of the distribution 

● So they get picked enough to generate weird 
sentences



Factors in word sampling: quality and diversity

Emphasize high-probability words 
+ quality: more  accurate, coherent, and factual, 
- diversity: boring, repetitive. 

Emphasize middle-probability words 
+ diversity: more creative, diverse, 
- quality: less factual, incoherent



Top-k sampling:

1. Choose # of words k 

2. For each word in the vocabulary V , use the language model 
to compute the likelihood of this word given the context p(wt
|w<t ) 

3. Sort the words by likelihood, keep only the top k most 
probable words. 

4. Renormalize the scores of the k words to be a legitimate 
probability distribution. 

5. Randomly sample a word from within these remaining k 
most-probable words according to its probability. 



Top-p sampling (= nucleus sampling)

Problem with top-k:  k is fixed so may cover very different 
amounts of probability mass in different situations

Idea: Instead, keep the top p percent of the probability mass

Given a distribution P(wt |w<t ), the top-p vocabulary V ( p) 
is the smallest set of words such that 

Holtzman et al., 2020 



Temperature sampling

Reshape the distribution instead of truncating it
Intuition from thermodynamics, 

• a system at high temperature is flexible and can 
explore many possible states,

• a system at lower temperature is likely to explore a 
subset of lower energy (better) states.

In low-temperature sampling,  (τ ≤ 1) we smoothly
• increase the probability of the most probable words
• decrease the probability of the rare words. 



Temperature sampling

Divide the logit by a temperature parameter τ before 
passing it through the softmax.

Instead of

We do  



Temperature sampling

Why does this work?

• When τ is close to 1 the distribution doesn’t change much. 

• The lower of a fraction τ is, the larger the scores being passed to the 
softmax

• Softmax pushes high values toward 1 and low values toward 0. 

• Large inputs (lower temperature) pushes high-probability words higher and 
low probability word lower, making the distribution more greedy. 

• As τ approaches 0, the probability of most likely word approaches 1 

0 ≤ τ ≤ 1 



● Transformer-based language models pretrained on lots of text are 
called large language models (LLMs)

● LLMs can have decoder-only, encoder-only, or encoder-decoder 
architectures

● Decoder-only LLMs can cast many different NLP tasks as word 
prediction

● There are many different sampling approaches that balance diversity 
and quality in text generation from LLMs

52

Wrapping up
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Questions?
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