

Markov jokes:

Once you've heard the latest one, you've heard them all.

CS 2731 / ISSP 2230 Introduction to Natural Language Processing

Session 18: HMMs part 2, Viterbi algorithm, neural sequence labeling

Michael Miller Yoder

October 29, 2024

School of Computing and Information

Course logistics

• <u>Homework 4</u> is **due next Thu Nov 7**

- Part 1: Do part-of-speech tagging manually with the Viterbi algorithm
- Part 2: Fine-tune BERT-based models for part-of-speech tagging in English and Norwegian
 - Copy and fill in a skeleton Colab notebook

Optional NLP colloquium talk this Friday

- Maarten Sap from CMU is giving the Pitt CS Colloquium talk this Fri Nov 1, 12-2pm, SENSQ 5317 with lunch (!)
- Title: "Artificial Social Intelligence? On the challenges of Socially Aware and Ethically informed LLMs"
- Learn more here: <u>https://calendar.pitt.edu/event/cs-</u> <u>colloquium-artificial-social-intelligence-on-</u> <u>the-challenges-of-socially-aware-and-</u> <u>ethically-informed-llms</u>

What topic or concept was the least clear to you from last lecture?

- Sequence labeling
- Part of speech tagging
- Named entity recognition
- Hidden Markov Models

Overview: HMMs part 2, Viterbi alg, neural sequence labeling

- HMMs review
- Training HMMs
- Decoding HMMs: Viterbi algorithm
- Sequence labeling with RNNs and transformers

Hidden Markov Models (HMMs) review

HMM review

With a partner, review:

- 1. What are the 2 key assumptions that HMMs make?
- 2. What are the 2 key tables of probabilities in HMMs and what do they mean?

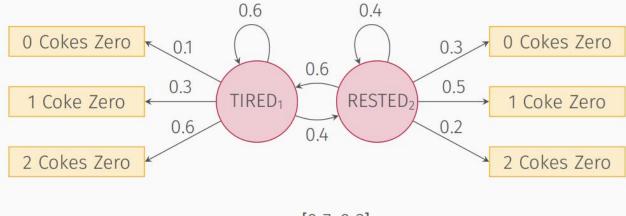
A formal definition of the Hidden Markov Model (HMM)

a set of *N* states $Q = q_1, \ldots, q_N$ $A = a_{1,1}, a_{1,2}, \ldots$ a transitional probability matrix of cells a_{ii} , where each cell is a probability of moving from state *i* to state *j*. $\sum_{i=1}^{N} a_{ii} = 1 \forall i$ a sequence of T observations, each drawn from a vocab- $0 = 0_1, \ldots, 0_T$ ulary V. a sequence of observation likelihoods (or emission prob- $B = b_1, \ldots, b_n$ **abilities**). The probability that observation o_t is generated by state q_i . an initial probability distribution over states (the proba- $\pi = \pi_1, \ldots, \pi_N$ bility that the Markov chain will start in state q_i . Some states q_i may have $p_i = 0$ (meaning they cannot be initial

states). $\sum_{i=1}^{N} \pi_i = 1 \forall i$

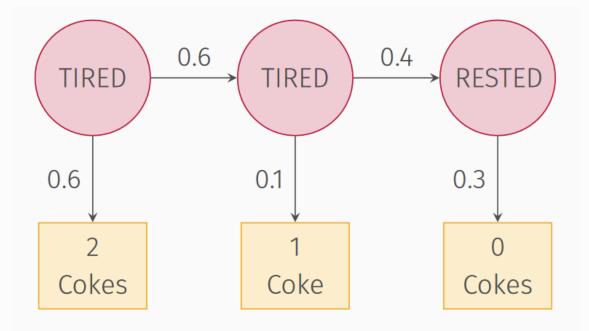
The Coke Zero Example

Since I do not drink coffee, I must drink Coke Zero to remain caffeinated. My consumption is related to my exhaustion. Could you build a model to infer my exhaustion from the number of Coke Zero bottles added to my wastebasket each day?



 $\pi = [0.7, 0.3]$

An example HMM sequence



Training HMMs

How do we learn the transition and emission probabilities?

- If we have (enough) data labeled with hidden and observed events, can just **use MLE/relative frequencies** with or without smoothing
- If we don't have (enough) labeled data, can use the Forward-Backward Algorithm, a special case of the Expectation Maximization (EM) algorithm
 - We won't go into the details of this algorithm, but the overview is that you start with an initial estimate and use that estimate to compute a better one iteratively

Training HMMs with labeled data

Suppose we knew both the sequence of days in which a grad student is tired or rested and the number of cokes that she consumes each day:

0	3	1
rested	tired	rested
1	2	2
tired	tired	tired
0	0	2
rested	rested	rested

How would you train an HMM?

Using MLE to train HMMs

First, compute π from the initial states:

 $\pi_t = 1/3 \ \pi_r = 2/3$

The we can compute the matrix A:

p(tired|tired) = 1/2 p(tired|rested) = 1/5p(rested|tired) = 1/4 p(rested|rested) = 2/5

and then the matrix B:

p(0|tired) = 0 p(0|rested) = 2/5 p(1|tired) = 1/4 p(1|rested) = 1/5 p(2|tired) = 1/2 p(2|rested) = 1/5p(3|tired) = 1/4 p(3|rested) = 0

Parameters of an HMM for POS

Decoding HMMs: Viterbi algorithm

Input: A trained HMM and a series of observations

Output: A series of labels, corresponding to hidden states of the HMM

This task shows up many times:

• Labeling words according to their parts of speech

• Labeling words according to whether they are at the beginning, otherwise inside of, or outside of a name

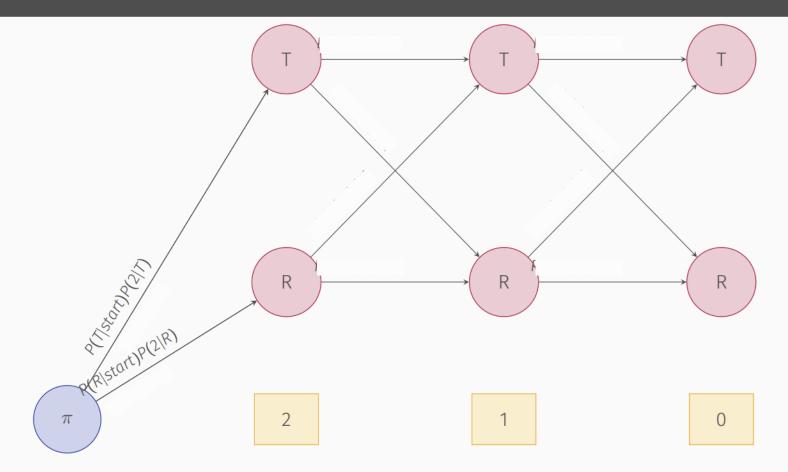
• Inferring the sequence of tired and not tired days in the month of a grad student based on their Coca-Cola consumption

More formally, given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, \ldots, o_T$, find the most probable sequence of states $Q = q_1, q_2, \ldots, q_T$

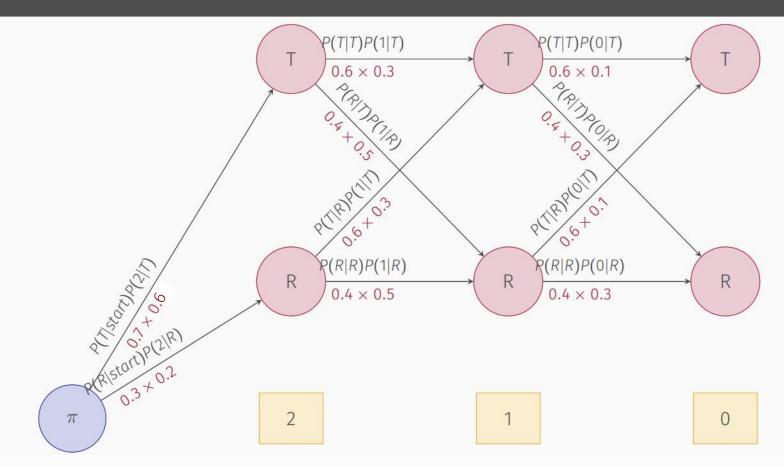
Dynamic programming

- Solves a larger problem by combining solutions to smaller subproblems
- Fills in a table for those subproblems
- Often used in NLP to compute optimal paths through sequences

Computing a Forward Trellis



Computing a Forward Trellis



Can we do better than the Forward Algorithm for decoding?

- Computing the probability for all possible sequences of states with the forward trellis is computationally infeasible
- The set of possible state sequences (e.g. TTT, TRT, TRR, RRR, ...) grows exponentially as the number of states N grows!

That's where dynamic programming comes in!

- Skip the repeated computation by recording the best probabilities for subsequences along the way
- Viterbi algorithm

The Viterbi Algorithm Can Be Used to Decode HMMs

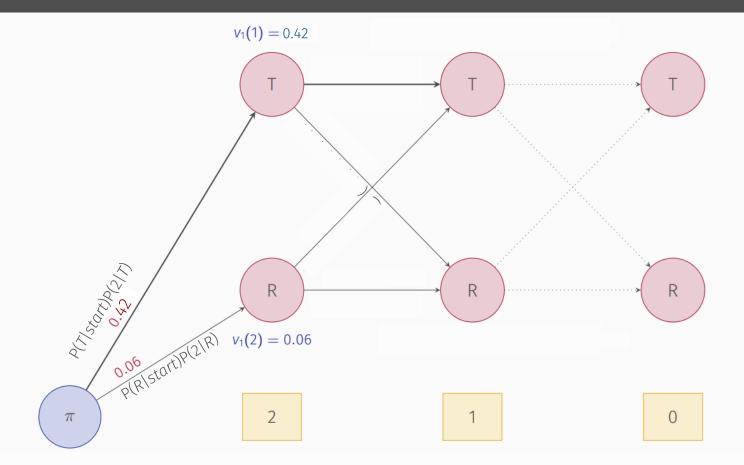
- 1: function VITERBI(observations $O = o_1, o_2, \ldots, 0_T$, state-graph of length N)
- 2: $V[N,T] \leftarrow$ empty path probability matrix
- 3: $B[N,T] \leftarrow$ empty backpointer matrix
- 4: for each $s \in 1..N$ do
- 5: $V[s,1] \leftarrow \pi_s \cdot b_s(o_1)$
- 6: $B[s, 1] \leftarrow 0$
- 7: for each $t \in 2..7$ do
- 8: for each $s \in 1..N$ do

9:
$$V[s,t] \leftarrow \max_{s'=1}^{N} V[s',t-1] \cdot a_{s',s} \cdot b_{s}(o_{t})$$

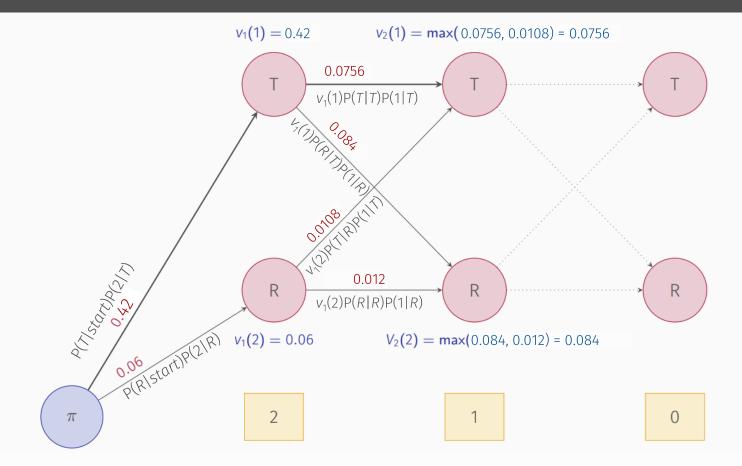
10:
$$B[s,t] \leftarrow \operatorname{argmax}_{s'=1}^{N} V[s',t-1] \cdot a_{s',s} \cdot b_{s}(o_{t})$$

- 11: $bestpathprob \leftarrow \max_{s=1}^{N} V[s, T]$
- 12: $bestpathpointer \leftarrow \max_{s=1}^{N} V[s, T]$
- 13: $bestpath \leftarrow path starting at bestpathpointer that follows b to states back in time.$
- 14: **return** *bestpath*, *bestpathprob*

Using Viterbi to Decode an HMM



Using Viterbi to Decode an HMM



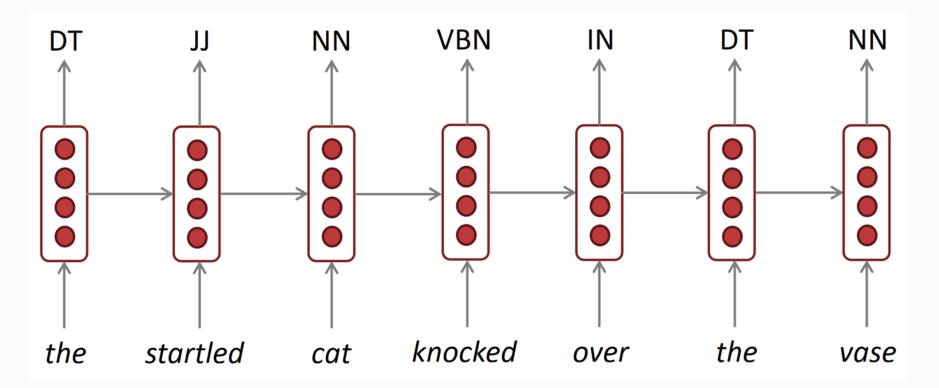
	В	I	0
В	0	0.5	0.5
I	.1	0	0.9
0	0.2	0	0.8

	United	States	live	in
В	0.8	0.3	0	0
I	0.1	0.6	0.1	0.1
0	0.1	0.1	0.9	0.9

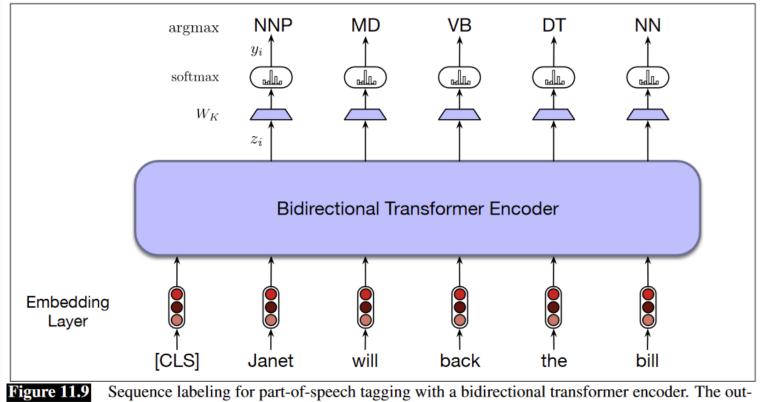
To decode: live in United States

Neural sequence labeling

RNNs can be used for sequence labeling



BERT can be used for sequence labeling



put vector for each input token is passed to a simple k-way classifier.

An alternative to BIO: span-based NER

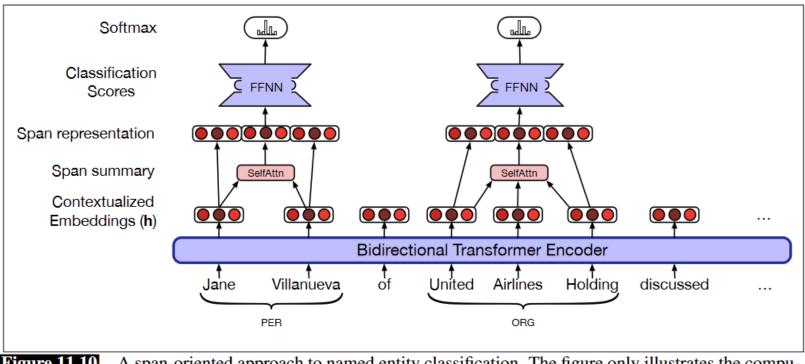


Figure 11.10 A span-oriented approach to named entity classification. The figure only illustrates the computation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the $\frac{T(T-1)}{2}$ spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit.

Wrapping up

- If enough annotated training data is available, HMMs can be trained with MLE
- The Viterbi algorithm is used for decoding HMMs
- RNNs and transformers can be trained to do sequence labeling

Questions?