Markov jokes:

Once you've heard the latest
one, you've heard them all.
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Course logistics

e Homework 4 is due next Thu Nov 7

o Part 1: Do part-of-speech tagging manually with the Viterbi algorithm

o Part2: Fine-tune BERT-based models for part-of-speech tagging in
English and Norwegian

m Copyand fill in a skeleton Colab notebook


https://michaelmilleryoder.github.io/cs2731_fall2024/hw4.html

Optional NLP colloquium talk this Friday

e Maarten Sap from CMU is giving the Pitt CS
Colloquium talk this Fri Nov 1, 12-2pm, SENSQ
5317 with lunch (!)

e Title: "Artificial Social Intelligence? On the
challenges of Socially Aware and Ethically
iInformed LLMs"

® [earn more here:
https://calendar.pitt.edu/event/cs-
colloguium-artificial-social-intelligence-on-
the-challenges-of-socially-aware-and-
ethically-informed-llms



https://calendar.pitt.edu/event/cs-colloquium-artificial-social-intelligence-on-the-challenges-of-socially-aware-and-ethically-informed-llms
https://calendar.pitt.edu/event/cs-colloquium-artificial-social-intelligence-on-the-challenges-of-socially-aware-and-ethically-informed-llms
https://calendar.pitt.edu/event/cs-colloquium-artificial-social-intelligence-on-the-challenges-of-socially-aware-and-ethically-informed-llms
https://calendar.pitt.edu/event/cs-colloquium-artificial-social-intelligence-on-the-challenges-of-socially-aware-and-ethically-informed-llms

Muddiest point

What topic or concept was the least
clear to you from last lecture?

Sequence labeling

Part of speech tagging
Named entity recognition
Hidden Markov Models




Overview: HMMs part 2, Viterbi alg, neural sequence labeling

e HMMs review
e Training HMMs
e Decoding HMMs: Viterbi algorithm

e Sequence labeling with RNNs and transformers



Hidden Markov Models (HMMs) review




With a partner, review:
1. What are the 2 key assumptions that HMMs make?

2. What are the 2 key tables of probabilities in HMMs and what do they
mean?



A formal definition of the Hidden Markov Model (HMM)

Q=4a1,...,Qqn a set of N states

A =a11,012,... a transitional probability matrix of cells a;, where each
cell is a probability of moving from state | to state J.
Z]N:1 aj =1Vi

O=01,...,07 a sequence of T observations, each drawn from a vocab-
ulary V.

B="b,...,b, a sequence of observation likelihoods (or emission prob-
abilities). The probability that observation oy is generated
by state g;.

T = T 055 TN an initial probability distribution over states (the proba-
bility that the Markov chain will start in state g;. Some
states g; may have p; = 0 (meaning they cannot be initial
states). SN, 7w = 1Vi

Slide credit: David Mortensen



The Coke Zero Example

Since | do not drink coffee, | must drink Coke Zero to remain caffeinated. My
consumption is related to my exhaustion. Could you build a model to infer my
exhaustion from the number of Coke Zero bottles added to my wastebasket each
day?

0 Cokes Zero 0 Cokes Zero

1 Coke Zero 1 Coke Zero

2 Cokes Zero 2 Cokes Zero

T = [0.7,0.3]
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Slide credit: David Mortensen



An example HMM sequence

0.6 0.4

0.6 0.1 0.3

Cokes Coke Cokes

1

Slide adapted from David Mortensen



Training HMMs
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Training an HMM

How do we learn the transition and emission probabilities?

e If we have (enough) data labeled with hidden and observed events,
can just use MLE/relative frequencies with or without smoothing

e If we don't have (enough) labeled data, can use the Forward-
Backward Algorithm, a special case of the Expectation Maximization
(EM) algorithm

o We won't go into the details of this algorithm, but the overview is that
you start with an initial estimate and use that estimate to compute a

better one iteratively
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Training HMMs with labeled data

Suppose we knew both the sequence of days in which a grad student is tired
or rested and the number of cokes that she consumes each day:

0 3 1
rested tired rested
1 2 2

tired tired tired
0 0 2
rested rested rested

How would you train an HMM?

1%

Slide adapted from David Mortensen



Using MLE to train HMMs

First, compute = from the initial states:
mt=1/3m =2/3
The we can compute the matrix A:

p(tired|tired) =1/2  p(tired|rested) =1/ g
p(rested|tired) =1/, p(rested|rested) =2/

and then the matrix B:
p(Oftired) =0  p(O0|rested) = 2/5
p(1|tired) =1/4 p(1|rested) = 1/5
p(2|tired) = ’|/2 p(2|rested) = 1/5
) =

Slide adapted from David Mortensen p(3 | tlred p(3 | I’QSted) = O "



Parameters of an HMM for POS

N Vv o)
N 01 06 03 transition probabilities
A= )
V. 03 03 04 . .
emission probabilities
03 04 0.3
I m gonna make him an offer he can t refuse
N 0.1 0.00001 0.00001 0.2 01 0.00001 0.2 01 01 0.00001 0.19996
B =
Vv 0.00001 01 0.2 0.2 0.00001 0.00001 0.05 0.00001 0.19995 0.00001 0.25
0] 0.00001 0.00001 0.00001 0.00001 0.00001 0.5 0.00001 0.00001 0.00001 0.49991 0.00001
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Slide adapted from David Mortensen



Decoding HMMs: Viterbi algorithm
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Often, we want to decode HMMs

Input: A trained HMM and a series of observations

Output: A series of labels, corresponding to hidden states of the HMM
This task shows up many times:

- Labeling words according to their parts of speech

- Labeling words according to whether they are at the beginning, otherwise inside of,
or outside of a name

- Inferring the sequence of tired and not tired days in the month of a grad student
based on their Coca-Cola consumption

More formally, given as input an HMM A = (A, B) and a sequence of observations O =
0., 0,, ..., O, find the most probable sequence of statesQ=q,, G, ..., gr

18
Slide adapted from David Mortensen



Dynamic programming

e Solves a larger problem by combining solutions to smaller
subproblems

e Fillsin a table for those subproblems

e Often used in NLP to compute optimal paths through sequences
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Computing a Forward Trellis

T /T\ T




Computing a Forward Trellis

eampan (D emeon

0.6 x 0.3 0.6 x 0.1

Y
-]

R(RIR)P(1[R) R(RIR)P(O[R)

R > R
0.4 % 0.5 U 0.4 % 0.3
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Slide credit: David Mortensen



Can we do better than the Forward Algorithm for decoding?

e Computing the probability for all possible sequences of states with
the forward trellis Is computationally infeasible

e The set of possible state sequences (e.g. TTT, TRT, TRR, RRR, ...) grows
exponentially as the number of states N grows!

That's where dynamic programming comes in!

e Skip the repeated computation by recording the best probabilities
for subsequences along the way

F
e \Viterbi algorithm I%

Slide credit: David Mortensen



The Viterbi Algorithm Can Be Used to Decode HMMs

1: function VITERBI(0bservations O = 04, 0, ..., 07, state-graph of length N)
2 V[N, T] «- empty path probability matrix

3 B[N, T] « empty backpointer matrix

4: foreach s € 1..N do

5: V[s, 1] « 75 - bs(01)

6 B[s,1] «+ 0

7 foreacht e 2..Tdo

8 for each s € 1..N do

9: V[s, t] < maxli_, V[s’,t — 1] - as s - bs(0¢)
10: B[s, t] < argmax®_, V[s’,t — 1] - as s - bs(0¢)

1:  bestpathprob + max!_, V[s,T]

12:  bestpathpointer < max!_, V[s,T]

13: bestpath < path starting at bestpathpointer that follows b to states back in time.
14 return bestpath, bestpathprob

Slide credit: David Mortensen
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Using Viterbi to Decode an HMM

vi(1) =0.42

@20@ v4(2) = 0.06

24

Slide adapted from David Mortensen



Using Viterbi to Decode an HMM

va(1) =0.42 v2(1) = max(0.0756, 0.0108) = 0.0756

0.0756
v,(DP(TIT)P(1IT)
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Slide adapted from David Mortensen



United | States | live in
0.8 0.3 0 0
0.1 0.6 0.1 0.1
0.1 0.1 0.9 0.9

B I 0
0 0.5 0.5
N 0 0.9
0.2 0 0.8

T

0.2

0

0.8

To decode:
live in United States
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Neural sequence labeling
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RNNs can be used for sequence labeling
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Slide adapted from Chris Manning



BERT can be used for sequence labeling

argmax NNP MD VB DT NN
Ui
LVK A 3
24
Bidirectional Transformer Encoder
Embedding
Layer
[CLS] Janet will back the bill

1T BY  Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The out-

put vector for each input token is passed to a simple k-way classifier. 30
Slide adapted from Jurafsky & Martin



An alternative to BIO: span-based NER

Softmax (ud) (:ﬂ*ﬂ“ﬂ:)

Classification L / AN S
Scores C FFNN 2 C FFNN 2
Span representation 0000090000 000000000

Span summary

Contextualized
Embeddings (h) CI I9) CI I9) m @00 @00 ©@e9 m
( Bidirectional Transformer Encoder )

f f i 1 }
Jane Villanueva of U n;t[ed Airl?nes Holding discussed
N _7/ A _

o

~
PER ORG

IOTUN B A span-oriented approach to named entity classification. The figure only illustrates the compu-
T(T-1)

tation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the —=
spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit. .~ T I BT



Wrapping up

If enough annotated training data Is available, HMMs can be trained
with MLE
e The Viterbi algorithm is used for decoding HMMs

e RNNs and transformers can be trained to do sequence labeling
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Questions?

33
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