
1
Source:
http://www.quickmeme.com/meme/tbt

Session 19: Dependency parsing

Michael Miller Yoder

November 4, 2024

2

CS 2731
Introduction to Natural Language Processing

● After tonight’s reading quiz, no reading quizzes for the rest of the
semester

● Discussion forum on the “Bender Rule” and the dominance of
English in NLP due this Wed Nov 6 at 1pm

3

Course logistics

● Homework 4 is due this Thu Nov 7

○ Part 1: Do part-of-speech tagging manually with the Viterbi algorithm

○ Part 2: Fine-tune BERT-based models for part-of-speech tagging in
English and Norwegian

■ Copy and fill in a skeleton Colab notebook

4

Course logistics: homework

https://michaelmilleryoder.github.io/cs2731_fall2024/hw4.html

● Project peer review due this Thu Nov 7

○ Will be released today

○ Form where you will review your own and your teammates’
contributions so far

○ Will not be used for grading, just for addressing any issues

● Project progress report due next Thu Nov 11

○ Max 3 pages, ACL format

○ Try to get something functional (has input and output, even if the
output is not great)

5

Course logistics: project

What topic or concept was the least
clear to you from last lecture?

● Training HMMs

● Decoding HMMs: Viterbi
algorithm

● Sequence labeling with RNNs
and transformers

6

Muddiest point

● What is syntax?

● Dependency grammar

○ Kinds of dependency in English

○ Dependencies and semantic roles

○ Dependency treebanks

● Dependency parsing

○ Transition-based dependency parsing

○ Projectivity

○ Evaluation

○ Tools and resources
7

Overview: Dependency parsing

8

What is syntax and why is it useful?

9
Slide credit: David Mortensen

10
Slide credit: David Mortensen

11
Slide credit: David Mortensen

● Humans communicate complex ideas by composing words together
into bigger units to convey complex meanings

● Human listeners need to work out what modifies (attaches to) what

● A model needs to understand sentence structure in order to be able
to interpret language correctly

● Sometimes syntax can be ambiguous!

12

Why do we need sentence structure (syntax)?

Slide adapted from Chris Manning

13

Ambiguity: prepositional phrase attachment

Slide adapted from Chris Manning

14

Ambiguity: prepositional phrase attachment

Slide adapted from Chris Manning

Scientists count whales from space

Slide adapted from
Chris Manning

15

Ambiguity: coordination scope

16

Different perspectives on syntax

17
Slide credit: David Mortensen

18
Slide credit: David Mortensen

19
Slide credit: David Mortensen

20

Dependency grammar

21
Slide credit: David Mortensen

22
Slide credit: David Mortensen

23
Slide credit: David Mortensen

24
Slide credit: David Mortensen

25

Dependencies are useful for languages with free word order

Slide adapted from David Mortensen

26

Kinds of dependency in English

27
Slide credit: David Mortensen

28
Slide credit: David Mortensen

29
Slide credit: David Mortensen

30

Dependencies and who did what to whom?

31
Slide credit: David Mortensen

32
Slide credit: David Mortensen

33
Slide credit: David Mortensen

34

Practical example: extracting protein-protein interaction

Slide adapted from Chris Manning

35

Dependency treebanks

36
Slide credit: David Mortensen

37
Slide credit: David Mortensen

38
Slide credit: David Mortensen

39
Slide credit: David Mortensen

40

Dependency parsing

41
Slide credit: David Mortensen

42
Slide credit: David Mortensen

43
Slide credit: David Mortensen

(arrow from predicate/main verb to subject)

(arrow from verb to object)

(arrow from verb to object)

(arrow from main noun to object of the preposition)

(arrow from noun to modifying adjective)

(arrow from noun to modifying adverb)

1. Enraged cow injures farmer with ax.

2. Hospitals are sued by seven foot doctors.

3. The woman saw the man with the telescope.
44

Practice: parse these sentences

46
Slide adapted from David Mortensen

Transition-based parsing

● Proceed through a sequence of actions, building up a representation
step by step

● The representation, and any step, depends on the representations
that came before

Graph-based parsing

● Start with probabilities for each edge
● Apply some sort of dynamic programming

Two approaches to dependency parsing

47

Transition-based dependency parsing

● Process input from left-to-right once, making a sequence of greedy
parsing decisions

● Represents the current state/configuration of the parse:
○ Stack
○ Buffer
○ Current set of relations

● In arc-standard parsing, possible actions are:
○ SHIFT: move first word in the buffer to the stack
○ LEFT-ARC: draw an arc from word in the top of the stack to second word

in the stack; remove dependent word (second word)
○ RIGHT-ARC: draw an arc from second word in the stack to the top of the

stack; remove dependent word (top of the stack)
48

Transition-based dependency parsing

Slide adapted from David Mortensen

49

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

50

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

51

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

52

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

53

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

54

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

55

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

56

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

57

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

58

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

59

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

60

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

61

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

62

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

63

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

64

Example of transition-based parsing

Slide adapted from Jurafsky & Martin

65
Slide credit: David Mortensen

66
Slide credit: David Mortensen

67
Slide credit: David Mortensen

68
Slide credit: David Mortensen

69
Slide credit: David Mortensen

70

Projectivity

● Definition of a projective parse: There are no crossing dependency
arcs when the words are laid out in their linear order, with all arcs
above the words

● Most syntactic structure is projective like this, but dependency
theory normally does allow non-projective structures to account for
displaced constituents
○ You can’t easily get the semantics of certain constructions right without

these nonprojective dependencies

71

Projectivity

Slide adapted from Chris Manning

● The arc-standard algorithm we just presented only builds projective dependency
trees

● Possible directions to head:

1. Just declare defeat on nonprojective arcs

2. Use a postprocessor to a projective dependency parsing algorithm to
identify and resolve nonprojective links

3. Add extra transitions that can model at least most non-projective
structures (e.g., add an extra SWAP transition will allow any non-projectivity)

4. Move to a parsing mechanism that does not use or require any constraints
on projectivity (e.g., the graph-based MSTParser or Dozat and Manning (2017))

72

Handling non-projectivity

Slide adapted from Chris Manning

73

Evaluation

74
Slide credit: David Mortensen

75

Evaluation: an example

Slide adapted
from Chris
Manning

76

Tools and resources for
dependency parsing

● UDPipe
○ Widely used
○ Provides parsing, morphological analysis, etc
○ A little harder to use than Stanza

● Stanza
○ New version of the classic Stanford Parser (which was in Java)
○ Pure Python

● spaCy (English)
○ Convenient Python library
○ Performs many other NLP tasks in addition to parsing
○ For the most part, is English-only

77

Dependency parsers

Slide adapted from David Mortensen

● Syntax concerns rules for grouping and ordering words into meaningful
phrases and sentences

● Constituencies and dependencies are two high-level formalisms for
syntax

● The dependency grammar formalism models syntactic head-dependent
relationships between words

● Dependency relationships are key to understanding who did what to
whom (semantic roles)

● Key families of algorithms for dependency parsing include transition-
based and graph-based parsers

78

Wrapping up

79

Questions?

	Slide 1
	Slide 2
	Slide 3: Course logistics
	Slide 4: Course logistics: homework
	Slide 5: Course logistics: project
	Slide 6: Muddiest point
	Slide 7: Overview: Dependency parsing
	Slide 8: What is syntax and why is it useful?
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Why do we need sentence structure (syntax)?
	Slide 13: Ambiguity: prepositional phrase attachment
	Slide 14: Ambiguity: prepositional phrase attachment
	Slide 15: Ambiguity: coordination scope
	Slide 16: Different perspectives on syntax
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Dependency grammar
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Dependencies are useful for languages with free word order
	Slide 26: Kinds of dependency in English
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Dependencies and who did what to whom?
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Practical example: extracting protein-protein interaction
	Slide 35: Dependency treebanks
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Dependency parsing
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Practice: parse these sentences
	Slide 46: Two approaches to dependency parsing
	Slide 47: Transition-based dependency parsing
	Slide 48: Transition-based dependency parsing
	Slide 49: Example of transition-based parsing
	Slide 50: Example of transition-based parsing
	Slide 51: Example of transition-based parsing
	Slide 52: Example of transition-based parsing
	Slide 53: Example of transition-based parsing
	Slide 54: Example of transition-based parsing
	Slide 55: Example of transition-based parsing
	Slide 56: Example of transition-based parsing
	Slide 57: Example of transition-based parsing
	Slide 58: Example of transition-based parsing
	Slide 59: Example of transition-based parsing
	Slide 60: Example of transition-based parsing
	Slide 61: Example of transition-based parsing
	Slide 62: Example of transition-based parsing
	Slide 63: Example of transition-based parsing
	Slide 64: Example of transition-based parsing
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Projectivity
	Slide 71: Projectivity
	Slide 72: Handling non-projectivity
	Slide 73: Evaluation
	Slide 74
	Slide 75: Evaluation: an example
	Slide 76: Tools and resources for dependency parsing
	Slide 77: Dependency parsers
	Slide 78: Wrapping up
	Slide 79

