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CS 2731
Introduction to Natural Language Processing



● I will go through project peer reviews soon

● Final project presentations are on Wed Dec 11

● Project report is due Thu Dec 12
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Course logistics: project
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With a partner, review what we’ve already learned about dialogue 
systems:

1. Differentiate between chatbots and task-oriented dialogue systems
2. Explain what speech acts are
3. Give examples of aspects of human conversation that AI systems 

may struggle with

Conversational agent review



● Design and ethical issues with conversational systems

● Rule-based chatbots (ELIZA review)

● Corpus-based chatbots

● Encoder-decoder framework for dialogue generation

● RLHF and ChatGPT
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Overview: Chatbots
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Design and ethical issues with 
conversational systems



1. Study the users and task 
[Gould and Lewis 1985]
• value-sensitive design

2. Build simulations
• Wizard of Oz study

3. Iteratively test design on users
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Dialog System Design: User-centered Design

Slide adapted from Jurafsky & Martin
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Ethical considerations

Ethical issues:
• Safety:  Systems abusing users, distracting drivers, or giving bad 

medical advice
• Representational harm: Systems demeaning particular social 

groups
• Privacy: Information Leakage



● Experimental Twitter chatbot 
launched in 2016

● Designed to learn from users 
(IR-based) 

● Taken offline 16 hours later
● Users fed Tay offensive and 

abusive content
● It started producing Nazi 

propaganda, conspiracy 
theories, harassing women 
online
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Abuse and Representational Harms: The case of Microsoft Tay

Slide adapted from Jurafsky & Martin, Diane Litman



● Dialog agents are 
overwhelmingly given female 
names, perpetuating female 
servant stereotype [Paolino 2017]

● Responses from commercial 
dialogue agents when users use 
sexually harassing language 
[Fessler 2017]
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Gender issues with dialogue systems

Slide adapted from Diane Litman
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Rule-based chatbots



● Early chatbot that imitated a Rogerian 
psychotherapist 
○ Rare type of conversation where can 

“assume the pose of knowing almost 
nothing of the real world”

○ Agent mirrors back what it hears

● Uses regular expression matching to 
match phrases

“I need X” 
and translates them into, e.g.
“What would it mean to you if 
you got X? 
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ELIZA [Weizenbaum 1966]

Slide adapted from Jurafsky & Martin, Lori Levin
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Slide credit: David Mortensen
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Slide credit: David Mortensen, Jurafsky & Martin
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Slide credit: David Mortensen, Jurafsky & Martin
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Corpus-based chatbots



Transcripts of telephone conversations between volunteers
• Switchboard corpus of American English telephone conversations

Movie dialogue
• Various corpora of movie subtitles

Hire human crowdworkers to have conversations among themselves
• Topical-Chat 11K crowdsourced conversations on 8 topics
• EMPATHETICDIALOGUES 25K crowdsourced conversations grounded in a situation where a 

speaker was feeling a specific emotion

Hire human crowdworkers to have conversations with the chatbot (and rate responses)
• RLHF, ChatGPT

Pseudo-conversations from public posts on social media
• Drawn from Twitter, Reddit, Weibo (微博), etc. 
• Tend to be noisy; often used just as pre-training.

Crucial to remove personally identifiable information (PII) 
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What conversations to draw on?

Slide adapted from Jurafsky & Martin
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Slide adapted from Jurafsky & Martin

● Think of response production as an encoder-decoder task
● Generate each token rt of the response by conditioning on the encoding of 

the entire query q and the response so far r1 … rt−1

Respond by generating: encoder-decoder
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LLM alignment: instruction tuning and RLHF



● Language models are not aligned with user intent [Ouyang et al. 2022]
● (Instruction) finetuning and RLHF to the rescue!
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Language modeling != doing dialogue

Slide adapted from Jesse Mu



Two techniques to align LLMs with human preferences (what we want 
them to do):

1. Instruction tuning

○ Models are finetuned on a corpus of instructions/questions and 
desired responses

2. Preference alignment (RLHF)

○ Separate model is trained to decide how much a candidate response 
aligns with human preferences

○ This reward model is used to finetune the base model
20

Post-training (model alignment)

Slide based on Jurafsky & Martin



● Collect examples 
of (instruction, 
output) pairs 
across many 
tasks and 
finetune an LM

● Still just LM 
objective (predict 
the next word) 
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Instruction tuning (instruction finetuning, SFT)

Slide adapted from Jesse 
Mu, Chung et al. 2022



● Expensive to collect ground-truth data for tasks

● Though you can include existing datasets of tasks like question answering

● And LLMs are now commonly used to generate instruction tuning datasets 

● Tasks like open-ended creative generation have no right answer.

○ Write me a story about a dog and her pet grasshopper.

● Language modeling penalizes all token-level mistakes equally, but some errors 
are worse than others

● Even with instruction finetuning, there is a mismatch between the LM objective 
and the objective of “satisfy human preferences”!

● Can we explicitly attempt to satisfy human preferences?
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Limitations of instruction finetuning

Slide adapted from Jesse Mu, Jurafsky & Martin



● Let’s say we were training a language model on some task (e.g. 
summarization).

● For each LM sample 𝑠, imagine we had a way to obtain a human 
reward of that summary: 𝑅(𝑠) ∈ ℝ, higher is better.
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Optimizing for human preferences

● Now we want to maximize the expected reward of samples from our LM
Slide adapted from Jesse Mu



● With RL algorithms like REINFORCE [Williams 1992] we use any 
arbitrary, non-differentiable reward function 𝑅(𝑠) , we can train our 
language model to maximize expected reward

Problem 1: human-in-the-loop is expensive!
Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem! [Knox and Stone, 2009]
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How do we model human preferences?

Slide adapted from Jesse Mu



Problem 2: human judgments are noisy and miscalibrated!
Solution: instead of asking for direct ratings, ask for pairwise 
comparisons, which can be more reliable [Phelps et al. 2015; Clark et al. 
2018]
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How do we model human preferences?

Slide adapted from Jesse Mu
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How do we model human preferences?

Slide adapted from Jesse Mu

Problem 2: human judgments are noisy and miscalibrated!
Solution: instead of asking for direct ratings, ask for pairwise 
comparisons, which can be more reliable [Phelps et al. 2015; Clark et al. 
2018]
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How do we model human preferences?

Slide adapted from Jesse Mu

Problem 2: human judgments are noisy and miscalibrated!
Solution: instead of asking for direct ratings, ask for pairwise 
comparisons, which can be more reliable [Phelps et al. 2015; Clark et al. 
2018]



● Takes in a sequence of text and
produces a scalar representing 
human preference for that text 
(scalar is needed for RL)

● Training data:

○ Prompts (can come from real users 
of OpenAI’s LLMs, e.g.)

○ LLM-generated responses to those 
prompts, ranked by human 
annotators
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Reward model

Slide based on https://huggingface.co/blog/rlhf



● Often using a policy-gradient RL algorithm: Proximal Policy 
Optimization (PPO)

● Policy: a language model that takes in a prompt and returns a 
sequence of text (or just probability distributions over text)

● Action space: the vocabulary of the language model 
● Observation space: the distribution of possible input token 

sequences
● Reward function is a combination of the preference model and a 

constraint on policy shift.
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Finetuning LLMs with a reward model

Slide based on https://huggingface.co/blog/rlhf
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RLHF: Putting it all together [Christiano et al. 2017; Stiennon et al. 2020]

Slide adapted from Jesse Mu
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Image from https://huggingface.co/blog/rlhf
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InstructGPT: scaling up RLHF to tens of thousands of tasks 

Slide adapted from Jesse Mu
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InstructGPT gets us closer to dialogue intent

Slide adapted from Jesse Mu
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InstructGPT can accomplish many tasks

Slide adapted from Jesse Mu
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ChatGPT: Instruction Finetuning + RLHF for dialog agents 

Slide adapted from Jesse Mu
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ChatGPT: Instruction Finetuning + RLHF for dialog agents 

Slide adapted from Jesse Mu
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Limitations of RL + Reward Modeling

● Human preferences are 
unreliable!

● “Reward hacking” is a common 
problem in RL

● Chatbots are rewarded to 
produce responses that seem 
authoritative and helpful, 
regardless of truth

● This can result in making up 
facts + hallucinations

Slide adapted from Jesse Mu



● Privacy, abuse, and representation harms are important ethical 
considerations for dialogue systems

● Rule-based chatbots, starting with the ELIZA system, can be quite 
effective

● Corpus-based chatbots can respond by generating responses after 
being trained on corpora 

● Large language models can be trained for dialogue using 
reinforcement learning from human feedback (RLHF)
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Wrapping up
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Questions?
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