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CS 2731
Introduction to Natural Language Processing



● Homework 1 due next Thu Sep 19

○ Feel free to ask questions in the Canvas discussion forum, email Jayden 
or Michael

● Project idea submission form due Thu Sep 19

○ All students must submit one idea for credit

○ You can submit one of the example project ideas from the website

○ Ideas do not need to be fully developed

● Additional readings for Mon Sep 16: 

● Data statements (Bender & Friedman 2018)

● Model cards (Mitchell et al. 2019)
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Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2024/hw1.html
https://forms.office.com/r/ZkMKpcSfhw
https://michaelmilleryoder.github.io/cs2731_fall2024/project.html#example-projects


● Learning the weights for features in logistic regression

○ Cross-entropy loss function

○ Stochastic gradient descent

○ Batch and mini-batch training

○ Regularization

○ Training multinomial logistic regression
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Lecture overview: logistic regression part 2



1. What is the necessary format for the input to logistic regression? 
What will the output format be?

2. What is the equation for calculating ො𝑦, the predicted class from an 
input vector 𝑥?
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Review: classification with logistic regression
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Logistic regression: learning the weights
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Wait, where did the w’s come from?

Slide credit: Jurafsky & Martin



A loss function:

cross-entropy loss

An optimization algorithm:

stochastic gradient descent
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Learning components

Slide credit: Jurafsky & Martin



Slide credit: Jurafsky & Martin
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Deriving cross-entropy loss for a single observation x

Slide adapted from Jurafsky & Martin

From the Bernoulli 
distribution, also expressed 
as:

0 1

ŷ=0.3



Now take the log of both sides (mathematically handy)

Whatever values maximize log p(y|x) will also maximize p(y|x)

Goal: maximize probability of the correct label p(y|x) 

Maximize:

Maximize:

10

Deriving cross-entropy loss for a single observation x

Slide credit: Jurafsky & Martin
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Deriving cross-entropy loss for a single observation x

Slide credit: Jurafsky & Martin

Now flip the sign to turn this into a loss: something to minimize

Minimize:
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Deriving cross-entropy loss for a single observation x

Slide credit: Jurafsky & Martin

Now flip the sign to turn this into a loss: something to minimize

Minimize:

This happens to be the formula for cross-entropy, 
a measure of difference between distributions 
from information theory

Claude Shannon
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Deriving cross-entropy loss for a single observation x

Slide credit: Jurafsky & Martin

Now flip the sign to turn this into a loss: something to minimize

Minimize:

Plugging in the definition of  



We want loss to be:
• smaller if the model estimate is close to correct

• bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate .         
So why was it so enjoyable ? For one thing , the cast is great . Another nice 
touch is the music . I was overcome with the urge to get off the couch and 
start dancing . It sucked me in , and it'll do the same to you .
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Let's see if this works for our sentiment example

Slide credit: Jurafsky & Martin



True value is y=1.  How well is our model doing?

Pretty well!  What's the loss?
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Let's see if this works for our sentiment example

Slide credit: Jurafsky & Martin



Suppose true value instead  was y=0.  

What's the loss?
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Let's see if this works for our sentiment example

Slide credit: Jurafsky & Martin



The loss when model was right (if true y=1) 

Is lower than the loss when model was wrong (if true y=0):

Sure enough, loss was bigger when model was wrong!
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Let's see if this works for our sentiment example

Slide credit: Jurafsky & Martin
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Stochastic gradient descent



19
Slide credit: David Mortensen



20
Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function 
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Let's first visualize for a single scalar w

Slide adapted from Jurafksy & Martin



Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function 

So we'll move 

positive (to the right)

Let's first visualize for a single scalar w

Slide adapted from Jurafksy & Martin



Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function 

Let's first visualize for a single scalar w

Slide adapted from Jurafksy & Martin

So we'll move 

positive (to the right)
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



Visualizing the gradient 
vector at the red point

It has two dimensions 
shown in the x-y plane
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Imagine 2 dimensions, w and b

Slide adapted from Jurafksy & Martin
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen

5.10
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Slide adapted from Jurafksy & Martin
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Slide credit: David Mortensen



One step of gradient descent

A mini-sentiment example, where the true y=1 (positive)

Two features:
x1 = 3    (count of positive lexicon words) 

x2 = 2    (count of negative lexicon words) 

Assume 3 parameters (2 weights and 1 bias) in Θ0 are zero:
w1 = w2 = b  = 0 

η = 0.1 
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Working through an example

Slide adapted from Jurafksy & Martin



Update step for update θ is:

where

Gradient vector has 3 dimensions:

Example of gradient descent

Slide adapted from Jurafksy & Martin

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2;
y = 1    



Update step for update θ is:

where

Gradient vector has 3 dimensions:

Example of gradient descent

Slide adapted from Jurafksy & Martin

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2;
y = 1    



η = 0.1; 

Now that we have a gradient, we compute the new parameter vector 
θ1 by moving θ0 in the opposite direction from the gradient: 

Example of gradient descent

Slide adapted from Jurafksy & Martin



η = 0.1; 

Now that we have a gradient, we compute the new parameter vector 
θ1 by moving θ0 in the opposite direction from the gradient: 

Example of gradient descent

Slide adapted from Jurafksy & Martin
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Batch and mini-batch training



44
Slide credit: David Mortensen
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Regularization



A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise 
○ A random word that perfectly predicts y (it happens to only occur in one class) 

will get a very high weight. 
○ Fails to generalize to a test set without this word 

A good model should be able to generalize
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Overfitting

Slide adapted from Jurafksy & Martin
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Training multinomial logistic regression
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Questions?

Homework 1 due next Thu Sep 19
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