
Session 8: Feedforward neural networks

Michael Miller Yoder

September 23, 2024

1

CS 2731
Introduction to Natural Language Processing

● Homework 2 is due next Thu Oct 3

○ Text classification

○ Written and programming components

○ Optional Kaggle competition for best LR and NN politeness classifiers

● Projects

○ Thanks for submitting your project ideas

○ Look out for the project ranking form (released today), due
this Thu Sep 26

○ Thanks for the discussion posts!
2

Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2

● Recommendations from Blodgett et al. for better work on bias

1. Ground work analyzing bias in relevant literature outside of NLP that
explores relationships between language and social hierarchies. Treat
representational harms as harmful in their own right

2. Explicitly state why “bias” in systems is harmful, in what ways, and to
whom. Be explicit about normative reasoning behind these judgements.

3. Engage with the lived experiences of members of communities affected
by NLP systems. Reimagine power relations between technologists and
such communities.

4

Blodgett et al. 2020 summary

● Language ideologies

● AAVE, Indian English (Dilip), Bhojpuri (Anveshika), regional Chinese dialects (Yifang), regional Korean dialects
(Geonyeong)

● ‘illegals’ (Hugh)
● Can limit opportunities for speakers of non-standard dialects
● Only “prestigious” dialects or languages in NLP training data (Xiaoyan)

● Allocational harms
○ Targeted emails for applications to MIT (John)
○ Underrepresentation of marginalized genders, ethnicities in EHR data, medical field (Akshat, Jiyang)

○ Resume filters (Rojin)
○ Loans (Zhuochun, Rojin)
○ Policing and sentencing (Rojin, Maanya)
○ Can more easily explore, “correct” biases in AI systems (Joel)
○ What can developers do to avoid biases? (Xianglong)

● CS researchers need to collaborate with others to address social issues (Yushui)

5

Discussion forum on Blodgett et al. 2020

● Neural network fundamentals

● Non-linear activation functions

● Linear algebra review

● Feedforward neural networks as classifiers

● Training feedforward neural networks (backpropagation)

6

Lecture overview: feedforward neural networks

7

Neural network fundamentals

8
By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830Slide adapted from Jurafsky & Martin

This is in your brain

9

Weights

Input layer

Weighted sum

Non-linear transform

Output value

bias

Neural Network Unit: This is not in your brain

Slide adapted from Jurafsky & Martin

10
Slide adapted from David Mortensen

11
Slide adapted from David Mortensen

12
Slide adapted from David Mortensen

13
Slide adapted from David Mortensen

14
Slide adapted from David Mortensen

15
Slide adapted from David Mortensen

16

Non-linear activation functions

17

Sigmoid

We're already seen the sigmoid for logistic
regression:

Non-Linear Activation Functions

Slide adapted from Jurafsky & Martin

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒−𝑧

18

tanh ReLU
Rectified Linear Unit

Most Common:

Non-Linear Activation Functions besides sigmoid

Slide adapted from Jurafsky & Martin

19

A little linear algebra

20
Slide adapted from David Mortensen

21
Slide adapted from David Mortensen

22
Slide adapted from David Mortensen

23
Slide adapted from David Mortensen

24
Slide adapted from David Mortensen

25
Slide adapted from David Mortensen

26

Feedforward neural networks

27
Slide adapted from David Mortensen

Can also be called multi-layer perceptrons (or MLPs) for
historical reasons

Slide adapted from Jurafsky & Martin
28

Feedforward Neural Networks

29
Slide adapted from David Mortensen

30

w

xnx1 +1

w1 wn b

(y is a
scalar)

σOutput layer
(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)

Binary Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin

31

W

xnx1

Fully connected single layer network

W is a
matrix

+1

y is a vector

y1 yn

b is a vector
b

s s sOutput layer
(softmax
nodes)

Input layer
scalars

Multinomial Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin

32
Slide adapted from David Mortensen

U

W

xnx1 +1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be
ReLU
or tanh

Slide adapted from Jurafsky & Martin

33

Two-Layer Network with scalar output

U

W

xnx1 +1

b

i

j
Wji

vector

Slide adapted from Jurafsky & Martin 34

Two-Layer Network with scalar output

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

y is a scalar

U

W

xnx1 +1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be
ReLU
Or tanh

Slide adapted from Jurafsky & Martin

35

Two-Layer Network with scalar output

U

W

xnx1 +1

b

hidden units
(σ node)

Input layer
(vector)

Output
layer
(σ node)

Could be
ReLU
Or tanh

y is a vector

Slide adapted from Jurafsky & Martin

36

Two-Layer Network with softmax output

W[1]

xnx1 +1

b[1]

i

j

W[2]
b[2]

sigmoid or softmax

ReLU

Slide adapted from Jurafsky & Martin

37

Multi-layer Notation

38
Slide credit: David Mortensen

39

Replacing the bias unit

Instead of: We'll do this:

Slide adapted from Jurafsky & Martin

40

Feedforward neural nets as classifiers

We could do exactly what we did with logistic regression

Input layer are binary features as before

Output layer is 0 or 1
U

W

xnx1

σ

Slide adapted from Jurafsky & Martin

41

Classification: Sentiment Analysis

42
Slide adapted from Jurafsky & Martin

Sentiment Features

Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between

features
• which may (or may not) improve performance.

43

U

W

xnx1

f1 f2
fn

W

xnx1

f1 f2
fn

Logistic
Regression

2-layer
feedforward
network

σσ

Slide adapted from Jurafsky & Martin

Feedforward nets for simple classification

The real power of deep learning comes from the
ability to learn features from the data

Instead of using hand-built human-engineered
features for classification

Use learned representations like embeddings!

44

U

W

xnx1

e1 e2
en

σ

Slide adapted from Jurafsky & Martin

Even better: representation learning

45
Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!

This assumes a fixed size length (3)!
Kind of unrealistic.
Some simple solutions:

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a
word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings
• For each dimension, pick the max value from all words

46
Slide adapted from Jurafsky & Martin

Issue: texts come in different sizes

What if you have more than two output classes?
○ Add more output units (one for each class)
○ And use a “softmax layer”

47

U

W

xnx1

Slide adapted from Jurafsky & Martin

Reminder: Multiclass Outputs

48

Training feedforward neural networks

49

U

W

xnx1Training instance

Forward pass

Backward
pass

Slide adapted from Jurafsky & Martin

Intuition: training a 2-layer Network

50
Slide credit: David Mortensen

51
Slide credit: David Mortensen

52
Slide credit: David Mortensen

Slide adapted from Jurafsky & Martin

53

Reminder: gradient descent for weight updates

Using the chain rule! f (x) = u(v(x))

Intuition (see the text for details)

54

Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

Slide adapted from Jurafsky & Martin

Where did that derivative come from?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!

What about deeper networks?

• Lots of layers, different activation functions?

Solution:

• Even more use of the chain rule!!

• Computation graphs and error backpropagation!

55
Slide adapted from Jurafsky & Martin

How can I find that gradient for every weight in the network?

For training, we need the derivative of the loss with respect to each weight
in every layer of the network

• But the loss is computed only at the very end of the
network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

• Relies on computation graphs

56
Slide adapted from Jurafsky & Martin

Why Computation Graphs

A computation graph represents the process of
computing a mathematical expression

57
Slide adapted from Jurafsky & Martin

Computation Graphs

Example:

58

Computations:

Slide adapted from Jurafsky & Martin

59

σ

W[2]

W[1]

y

x2
x1

Sigmoid activation

ReLU activation

1

1

b[1]

b[2]

Slide adapted from Jurafsky & Martin

Backward differentiation on a two layer network

For training, we need the derivative of the loss with
respect to weights in early layers of the network

• But loss is computed only at the very end of the
network!

Solution: backpropagation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the
derivative of the loss with respect to these early weights.

60

Summary

61

Questions?

	Slide 1
	Slide 2: Course logistics
	Slide 4: Blodgett et al. 2020 summary
	Slide 5: Discussion forum on Blodgett et al. 2020
	Slide 6: Lecture overview: feedforward neural networks
	Slide 7: Neural network fundamentals
	Slide 8: This is in your brain
	Slide 9: Neural Network Unit: This is not in your brain
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Non-linear activation functions
	Slide 17: Non-Linear Activation Functions
	Slide 18: Non-Linear Activation Functions besides sigmoid
	Slide 19: A little linear algebra
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Feedforward neural networks
	Slide 27
	Slide 28: Feedforward Neural Networks
	Slide 29
	Slide 30: Binary Logistic Regression as a 1-layer Network
	Slide 31: Multinomial Logistic Regression as a 1-layer Network
	Slide 32
	Slide 33: Two-Layer Network with scalar output
	Slide 34: Two-Layer Network with scalar output
	Slide 35: Two-Layer Network with scalar output
	Slide 36: Two-Layer Network with softmax output
	Slide 37: Multi-layer Notation
	Slide 38
	Slide 39: Replacing the bias unit
	Slide 40: Feedforward neural nets as classifiers
	Slide 41: Classification: Sentiment Analysis
	Slide 42: Sentiment Features
	Slide 43: Feedforward nets for simple classification
	Slide 44: Even better: representation learning
	Slide 45: Neural net classification with embeddings as input features!
	Slide 46: Issue: texts come in different sizes
	Slide 47: Reminder: Multiclass Outputs
	Slide 48: Training feedforward neural networks
	Slide 49: Intuition: training a 2-layer Network
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Reminder: gradient descent for weight updates
	Slide 54: Where did that derivative come from?
	Slide 55: How can I find that gradient for every weight in the network?
	Slide 56: Why Computation Graphs
	Slide 57: Computation Graphs
	Slide 58: Example:
	Slide 59: Backward differentiation on a two layer network
	Slide 60: Summary
	Slide 61

