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CS 2731
Introduction to Natural Language Processing



● Homework 2 is due next Thu Oct 3

○ Text classification

○ Written and programming components

○ Optional Kaggle competition for best LR and NN politeness classifiers

● Projects

○ Thanks for submitting your project ideas

○ Look out for the project ranking form (released today), due
this Thu Sep 26

○ Thanks for the discussion posts!
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Course logistics

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2


● Recommendations from Blodgett et al. for better work on bias

1. Ground work analyzing bias in relevant literature outside of NLP that 
explores relationships between language and social hierarchies. Treat 
representational harms as harmful in their own right

2. Explicitly state why “bias” in systems is harmful, in what ways, and to 
whom. Be explicit about normative reasoning behind these judgements.

3. Engage with the lived experiences of members of communities affected 
by NLP systems. Reimagine power relations between technologists and 
such communities.
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Blodgett et al. 2020 summary



● Language ideologies

● AAVE, Indian English (Dilip), Bhojpuri (Anveshika), regional Chinese dialects (Yifang), regional Korean dialects 
(Geonyeong)

● ‘illegals’ (Hugh)
● Can limit opportunities for speakers of non-standard dialects
● Only “prestigious” dialects or languages in NLP training data (Xiaoyan)

● Allocational harms
○ Targeted emails for applications to MIT (John)
○ Underrepresentation of marginalized genders, ethnicities in EHR data, medical field (Akshat, Jiyang)

○ Resume filters (Rojin)
○ Loans (Zhuochun, Rojin)
○ Policing and sentencing (Rojin, Maanya)
○ Can more easily explore, “correct” biases in AI systems (Joel)
○ What can developers do to avoid biases? (Xianglong)

● CS researchers need to collaborate with others to address social issues (Yushui)
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Discussion forum on Blodgett et al. 2020



● Neural network fundamentals

● Non-linear activation functions

● Linear algebra review

● Feedforward neural networks as classifiers

● Training feedforward neural networks (backpropagation)
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Lecture overview: feedforward neural networks
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Neural network fundamentals
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By BruceBlaus - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=28761830Slide adapted from Jurafsky & Martin

This is in your brain
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Weights

Input layer

Weighted sum

Non-linear transform

Output value

bias

Neural Network Unit: This is not in your brain

Slide adapted from Jurafsky & Martin
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Non-linear activation functions
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Sigmoid

We're already seen the sigmoid for logistic 
regression:

Non-Linear Activation Functions

Slide adapted from Jurafsky & Martin

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒−𝑧
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tanh ReLU
Rectified Linear Unit

Most Common:

Non-Linear Activation Functions besides sigmoid

Slide adapted from Jurafsky & Martin
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A little linear algebra
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen



25
Slide adapted from David Mortensen
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Feedforward neural networks
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Slide adapted from David Mortensen



Can also be called multi-layer perceptrons (or MLPs)  for 
historical reasons

Slide adapted from Jurafsky & Martin
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Feedforward Neural Networks
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Slide adapted from David Mortensen
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Binary Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin
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Multinomial Logistic Regression as a 1-layer Network

Slide adapted from Jurafsky & Martin
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Slide adapted from David Mortensen
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Slide adapted from Jurafsky & Martin
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Two-Layer Network with scalar output
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Slide adapted from Jurafsky & Martin 34

Two-Layer Network with scalar output

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

y is a scalar
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Slide adapted from Jurafsky & Martin
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Two-Layer Network with scalar output
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ReLU
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y is a vector

Slide adapted from Jurafsky & Martin
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Two-Layer Network with softmax output
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Slide adapted from Jurafsky & Martin
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Multi-layer Notation
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Slide credit: David Mortensen
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Replacing the bias unit

Instead of: We'll do this:

Slide adapted from Jurafsky & Martin
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Feedforward neural nets as classifiers



We could do exactly what we did with logistic regression

Input layer are binary features as before

Output layer is 0 or 1
U

W

xnx1

σ

Slide adapted from Jurafsky & Martin
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Classification: Sentiment Analysis
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Slide adapted from Jurafsky & Martin

Sentiment Features



Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between 

features 
• which may (or may not) improve performance.
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Slide adapted from Jurafsky & Martin

Feedforward nets for simple classification



The real power of deep learning comes from the 
ability to learn features from the data

Instead of using hand-built human-engineered 
features for classification

Use learned representations like embeddings!
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U

W

xnx1
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σ

Slide adapted from Jurafsky & Martin

Even better: representation learning
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Slide adapted from Jurafsky & Martin

Neural net classification with embeddings as input features!



This assumes a fixed size length (3)!  
Kind of unrealistic.   
Some simple solutions:

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a 
word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings
• For each dimension, pick the max value from all words
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Slide adapted from Jurafsky & Martin

Issue: texts come in different sizes



What if you have more than two output classes?
○ Add more output units (one for each class)
○ And use a “softmax layer”
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U

W

xnx1

Slide adapted from Jurafsky & Martin

Reminder: Multiclass Outputs
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Training feedforward neural networks
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U

W

xnx1Training instance

Forward pass

Backward 
pass

Slide adapted from Jurafsky & Martin

Intuition: training a 2-layer Network
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen



Slide adapted from Jurafsky & Martin
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Reminder: gradient descent for weight updates



Using the chain rule!   f (x) = u(v(x)) 

Intuition (see the text for details)
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Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

Slide adapted from Jurafsky & Martin

Where did that derivative come from?



These derivatives on the prior slide only give the updates for one weight 
layer: the last one! 

What about deeper networks?

• Lots of layers, different activation functions?

Solution:

• Even more use of the chain rule!! 

• Computation graphs and error backpropagation!
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Slide adapted from Jurafsky & Martin

How can I find that gradient for every weight in the network?



For training, we need the derivative of the loss with respect to each weight 
in every layer of the network 

• But the loss is computed only at the very end of the 
network! 

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986) 

• Relies on computation graphs
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Slide adapted from Jurafsky & Martin

Why Computation Graphs



A computation graph represents the process of 
computing a mathematical expression
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Slide adapted from Jurafsky & Martin

Computation Graphs



Example: 
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Computations:

Slide adapted from Jurafsky & Martin
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Slide adapted from Jurafsky & Martin

Backward differentiation on a two layer network



For training, we need the derivative of the loss with 
respect to weights in early layers of the network 

• But loss is computed only at the very end of the 
network! 

Solution: backpropagation

Given a computation graph and the derivatives of all the 
functions in it we can automatically compute the 
derivative of the loss with respect to these early weights.
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Summary



61

Questions?
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