CS 2731
Introduction to Natural Language Processing

Session 8: Feedforward neural networks

Michael Miller Yoder
September 23, 2024

University of
Pittsb};lrgh School of Computing and Information

Course logistics

e Homework 2 is due next Thu Oct 3

o Text classification
o Written and programming components

o Optional Kaggle competition for best LR and NN politeness classifiers
e Projects
o Thanks for submitting your project ideas

o Look out for the project ranking form (released today), due
this Thu Sep 26

o Thanks for the discussion posts!

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2

Blodgett et al. 2020 summary

e Recommendations from Blodgett et al. for better work on bias

1. Ground work analyzing bias in relevant literature outside of NLP that
explores relationships between language and social hierarchies. Treat
representational harms as harmful in their own right

2. Explicitly state why “bias” in systems is harmful, in what ways, and to
whom. Be explicit about normative reasoning behind these judgements.

3. Engage with the lived experiences of members of communities affected

by NLP systems. Reimagine power relations between technologists and
such communities.

Discussion forum on Blodgett et al. 2020

® |anguage ideologies

® AAVE, Indian English (Dilip), Bhojpuri (Anveshika), regional Chinese dialects (Yifang), regional Korean dialects
(Geonyeong)

® ‘illegals' (Hugh)
® Can limit opportunities for speakers of non-standard dialects
® Only “prestigious” dialects or languages in NLP training data (Xiaoyan)

® Allocational harms
O Targeted emails for applications to MIT (John)
O Underrepresentation of marginalized genders, ethnicities in EHR data, medical field (Akshat, Jiyvang)
O Resume filters (Rojin)
O Loans (Zhuochun, Rojin)
O Policing and sentencing (Rojin, Maanya)
O Can more easily explore, “correct” biases in Al systems (Joel)
O What can developers do to avoid biases? (Xianglong)
S

® (S researchers need to collaborate with others to address social issues (Yushui)

Lecture overview: feedforward neural networks

e Neural network fundamentals

e Non-linear activation functions

e Linear algebra review

e Feedforward neural networks as classifiers

e Training feedforward neural networks (backpropagation)

Neural network fundamentals

This is in your brain

Cell body

Axon Telodendria) '-
/“r i
f

Axon hilw\K Synaptic terminals

N

; \
{ X
Nucleus{ A

Golgi apparatus
Endoplasmic
reticulum

P
Mitochondrion \ \ Dendrite

/ & Dendritic branches

By BruceBlaus - Own work, CC BY 3.0,
slide adapted from Jurafsky & Martin https://commons.wikimedia.org/w/index.php?curid=28761830

Neural Network Unit: This is not in your brain

Output value

Non-linear transform

Welghted sum

Input layer

Slide adapted from jurafsky & Martin

The Variables in Our Very Important Formula

x A vector of features of n dimensions (like number of positive sentiment
words, length of document, etc.)

w A vector of weights of n dimensions specifying how discriminative each
feature Is

b A scalar bias term that shifts z
z The raw score

y A random variable (e.g.,, y = 1 means positive sentiment and y = 0 means
negative sentiment

10

Slide adapted from David Mortensen

The Fundamentals

The fundamental equation that describes a unit of a neural network should look very
familiar:

z:b+ZW,-xf- (1)

Which we will represent as
Z=w-xX+0b (2)

But we do not use z directly. Instead, we pass it through a non-linear function, like the

sigmoid function:
1

T 1+e? G)

(which has some nice properties even though, in practice, we will prefer other functions
like tanh and RelU).

y=o0(2)

1

Slide adapted from David Mortensen

A Unit Illustrated

X1

W1

Wo Z a
Xo b3 o y
X3

Take, for example, a scenario in which our unit has the weights [0, 0.4, 0.2] and the bias
term 0.4 and the input vector x has the values [0.3, 0.2, 0.9].

12

Slide adapted from David Mortensen

Filling in the Input Values and Weights

0.3

\
0.4 Z a

0.2 0> O y

y

0.9

13

Slide adapted from David Mortensen

Multiplying the Input Values and Weights and Summing Them (with the Bias Term)

0.3

\
0.4 0.69 a

0.2 8 o y

%

0.9

Z = X{Wjy + XaWs + X3W3 + b = 0.1(0.3) + 0.4(0.2) + 0.2(0.9) + 0.4 = 0.69 (4)

1%

Slide adapted from David Mortensen

Applying the Activation Function (Sigmoid)

0.3

\
0.4 0.69 0.67

0.2)Y o — 0.67
0.2

B

0.9

1 _

15

Slide adapted from David Mortensen

Non-linear activation functions

16

Non-Linear Activation Functions

We're already seen the sigmoid for logistic

regression:
1.0
° ° 08
Sigmold
y
1 0.4f
y=0@= 1=

0.0

17
Slide adapted from jurafsky & Martin

Non-Linear Activation Functions besides sigmoid

1.0
_€g-e”’
_ 0.5 y ez+ e_z
:C@ 0.0
I
>
-0.5
~1.075 -5 0
tanh

Slide adapted from jurafsky & Martin

10

Most Common:

10
Y3 max(z 0)
T o
£
g}
-5
~105 -5 0 5 10

RelLU
Rectified Linear Unit =

A little linear algebra

19

So Far, We Have Assume You Know Dot Products

a—= (01902903)
b — (bla b27 b?))
a-b= Glbl + GQbQ + ngg

20

Slide adapted from David Mortensen

Now, You Need to Multiply Matrices

A matrix I1s an array of numbers

6 4 24
1 -9 8

Two rows, three columnes.

21
Slide adapted from David Mortensen

It's Easy to Multiple a Matrix by a Scalar

Slide adapted from David Mortensen

o 2
31

9.59.92

2:3 2-1

107
2 4

22

Multiplying Matrices by Matrices Is Slightly Trickier

Let a; and a, be the row vectors of matrix A and b; and by be the column vectors of a
matrix B. Find C = AB

| 3. _|leiBl @1-B8| | 38 17
2 4 5 |2l @28 | | 26 14

A must have the same number of rows as B has columns.

23

Slide adapted from David Mortensen

Multiplying a Matrix by a Vector Is Roughly the Same

Multiplying a matrix by a vector is like multiply a matrix by a matrix with one column:

X [ax + by + cz
dx + ey + fz
gx + hy + iz

mm o W
o M O
H- =k M
[

I

The result is a vector.

24

Slide adapted from David Mortensen

Matrix multiplication is not hard but
inference with neural nets i1s mostly this
(plus some non-linear functions)

25

Feedforward neural networks

26

Adding multiple units to a neural network
Increases Its power to learn patterns in
data. Feedforward Neural Nets (FFNNs or
MLPs)

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for
historical reasons

Slide adapted from jurafsky & Martin

The simplest FFNN Is just binary logistic
regression
(INPUT LAYER = feature vector)

29

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Output layer ‘ y=ocw-:x+b)
(0 node) (yis a
scalar)
W Wl Wn b (scalar)
(vector)

ot ® @ @ & @

Slide adapted from jurafsky & Martin

30

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

Y1 Yn
Output layer ‘ ‘ ‘ y = softmax(Wx + b)
(softmax y IS a vector
nodes)
W b
W IS a b Is a vector
matrix

Input layer ‘ ‘ ‘ ‘ ‘

scalars

Slide adapted from jurafsky & Martin

31

The real power comes when multiple
layers are added

32

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh

hidden units O 0 0 h=cWx+b)

(O node) Could be
W b RelU

or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

33

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh
hidden units W.. ‘ h=oc(Wx+Db)
(0 node) -

W b vector

Input layer
(vector) ‘

Slide adapted from jurafsky & Martin

3

4

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh
hidden units O 0 0 h=cWx+b)
(0 node) Co

W b Or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

35

Two-Layer Network with softmax output

O @ vy = softmax(z)

Output
layer U z=Uh
(6 node) y IS a vector
hidden units O 0O 0 h=cWx+b)
(0 node) Co

W b O?tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

36

Multi-layer Notation

y = al?l

a[2] — g[z](z[z]) sigmoid or softmax

[2] = W[z]a[l] + b[Z]

WI2] o

. ‘ ‘ a[l] — g[l](z[1]) ReLU
[1] = yl1lglol 4 pla]

Z a

VWIL i1

® ® 00 ® @~
37

Slide adapted from jurafsky & Martin

A Forward Pass in Terms of Multi-Layer Notation

qlo] e
X1

W1

Wi 1] qll] for each i €1.n do |
Xo) o y Al Wiilgli-1 4 pli

Wi alll < glil(zI

end for

X3 y < alnl

38

Slide credit: David Mortensen

Replacing the bias unit

Instead of:

Slide adapted from jurafsky & Martin

We'll do this:

.AW. =

39

Feedforward neural nets as classifiers

40

Classification: Sentiment Analysis

We could do exactly what we did with logistic regression
Input layer are binary features as before

Output layer is 0 or 1
U

41
Slide adapted from jurafsky & Martin

Sentiment Features

Var Definition
X1 count(positive lexicon) € doc)
x; count(negative lexicon) € doc)

{ 1 if “no” < doc

X .
e (0 otherwise

x4 count(lst and 2nd pronouns € doc)
{ 1 if " e doc

X .
s 0 otherwise

x¢ log{word count of doc)

42
Slide adapted from jurafsky & Martin

Feedforward nets for simple classification

Logisti 2-layer
ogistic. W feedforward
Regression S

f, f, f

. f fa

Just adding a hidden layer to logistic regression

 allows the network to use non-linear interactions between
features

* which may (or may not) improve performance.

Slide adapted from jurafsky & Martin

43

Even better: representation learning

The real power of deep learning comes from the
ability to learn features from the data

Instead of using hand-built human-engineered
features for classification

Use learned representations like embeddings!

A

Slide adapted from jurafsky & Martin

Neural net classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

Hidden layer

Projection layer

embeddings
E embedding tor embedding for embedding for
word 534 word 23864 word 7
The dessert is
Slide adapted from Jurafsky & Martin W1 Wo W3

45

Issue: texts come in different sizes

@@ 9. 00 [F8.:0:.:00 (00::0:-00

! f

This assumes a fixed size length (3)! e“li’if%‘??f“ pberstt St i
5 . 5 !

Kind of unrealistic. [The | dessert | 5 |

Some simple solutions: i vy w3

1. Make the input the length of the longest review
« |f shorter then pad with zero embeddings
« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a
word) to represent all the words

e Take the mean of all the word embeddings
« Take the element-wise max of all the word embeddings
 For each dimension, pick the max value from all words

46
Slide adapted from jurafsky & Martin

Reminder: Multiclass Outputs

What if you have more than two output classes?
O Add more output units (one for each class)

O And use a “softmax layer”

47
Slide adapted from jurafsky & Martin

Training feedforward neural networks

48

Intuition: training a 2-layer Network

} Loss function L(¥, y)

Backward

* =t

Forward pass

Training instance

49
Slide adapted from jurafsky & Martin

Remember stochastic gradient descent
from the logistic regression lecture—find
gradient and optimize

Slide credit: David Mortensen

50

The Intuition Behind Training a 2-Layer Network

For every training tuple (x,y)

1. Run forward computation to find the estimate y

2. Run backward computation to update weights
- For every output node

- Compute the loss L between true y and estimated §
- For every weight w from the hidden layer to the output layer: update the weights

- For every hidden node

- Assess how much blame it deserves for the current answer
- From every weight w from the input layer to the hidden layer
-+ Update the weight

51

Slide credit: David Mortensen

Computing the gradient requires finding
the derivative of the loss with respect to
each weight in every layer of the network.
Error backpropagation through
computation graphs.

Slide credit: David Mortensen

Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to
weights % L(f(x;w),y)

To tell us how to adjust weights for each training item
> Move them in the opposite direction of the gradient

d
Wiy = We — T?%LCE(}C(X; w),Y)

o For logistic regression

aLCE(yay)

Slide adapted from jurafsky & Martin & WJ

= [o(w-x+b)—yx; ,

Where did that derivative come from?

ﬂ_dudv

Using the chain rule! f(x) = u(v(x)) :
Intuition (see the text for details) dx dv dx

Derivative of the weighted sum

Derivative of the Activation

Derivative of the Loss

dL _ 9L dy 0z
dw; 9y 9z dw;

+1

54
Slide adapted from jurafsky & Martin

How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!

What about deeper networks?

®* Lots of layers, different activation functions?
Solution:

® Even more use of the chain rule!!

®* Computation graphs and error backpropagation!

55
Slide adapted from jurafsky & Martin

Why Computation Graphs

For training, we need the derivative of the loss with respect to each weight
In every layer of the network

« Butthe loss Is computed only at the very end of the
network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)
« Relies on computation graphs

56

Slide adapted from jurafsky & Martin

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

57
Slide adapted from jurafsky & Martin

Slide adapted from Jurafsky & Martin

L(a,b,c) = c(a+2b)

d = 2xb

Computations: e = a+d
L = cxe

58

Backward differentiation on a two layer network

Sigmoid activation

W2l bl2]
ZZ _ W[Z]a[l]_|_b[2]
RelLU activation 2 2]
a“ = o(zY)
W bl1] 2
5 = gl

Slide adapted from jurafsky & Martin

For training, we need the derivative of the loss with
respect to weights in early layers of the network

« But loss Is computed only at the very end of the
network!

Solution: backpropagation

Glven a computation graph and the derivatives of all the
functions in It we can automatically compute the
derivative of the loss with respect to these early weights.

60

Questions?

61

	Slide 1
	Slide 2: Course logistics
	Slide 4: Blodgett et al. 2020 summary
	Slide 5: Discussion forum on Blodgett et al. 2020
	Slide 6: Lecture overview: feedforward neural networks
	Slide 7: Neural network fundamentals
	Slide 8: This is in your brain
	Slide 9: Neural Network Unit: This is not in your brain
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Non-linear activation functions
	Slide 17: Non-Linear Activation Functions
	Slide 18: Non-Linear Activation Functions besides sigmoid
	Slide 19: A little linear algebra
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Feedforward neural networks
	Slide 27
	Slide 28: Feedforward Neural Networks
	Slide 29
	Slide 30: Binary Logistic Regression as a 1-layer Network
	Slide 31: Multinomial Logistic Regression as a 1-layer Network
	Slide 32
	Slide 33: Two-Layer Network with scalar output
	Slide 34: Two-Layer Network with scalar output
	Slide 35: Two-Layer Network with scalar output
	Slide 36: Two-Layer Network with softmax output
	Slide 37: Multi-layer Notation
	Slide 38
	Slide 39: Replacing the bias unit
	Slide 40: Feedforward neural nets as classifiers
	Slide 41: Classification: Sentiment Analysis
	Slide 42: Sentiment Features
	Slide 43: Feedforward nets for simple classification
	Slide 44: Even better: representation learning
	Slide 45: Neural net classification with embeddings as input features!
	Slide 46: Issue: texts come in different sizes
	Slide 47: Reminder: Multiclass Outputs
	Slide 48: Training feedforward neural networks
	Slide 49: Intuition: training a 2-layer Network
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Reminder: gradient descent for weight updates
	Slide 54: Where did that derivative come from?
	Slide 55: How can I find that gradient for every weight in the network?
	Slide 56: Why Computation Graphs
	Slide 57: Computation Graphs
	Slide 58: Example:
	Slide 59: Backward differentiation on a two layer network
	Slide 60: Summary
	Slide 61

