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Introduction to Natural Language Processing
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Course logistics

● Homework 2 is due next Thu Oct 3

○ Text classification

○ Written and programming components

○ Optional Kaggle competition for best LR and NN deception classifiers

● Project ranking form is due tomorrow, Thu Sep 26

https://michaelmilleryoder.github.io/cs2731_fall2024/hw2


● Language modeling

● N-gram language models

● Estimating n-gram probabilities

● Perplexity and evaluating language models
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Lecture overview: N-gram language models, part 1



APPLICATIONS
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Introduction to language models
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Slide credit: David Mortensen
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Slide credit: David 
Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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N-gram language models
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Slide credit: David Mortensen
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Slide credit: David Mortensen



14Slide credit: David Mortensen

The chain rule to compute the joint probability of words in a 
sentence



15Slide credit: David Mortensen

But this can’t be a valid estimate! “now is the winter of
our” is going to very rare in corpora. It isn’t going to be 
a good estimate of its true probability.
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Slide credit: David Mortensen

Is P(discontent|now is the winter of our) really easier to
compute than P(now is the winter of our discontent)?

How can the chain rule help us? We can cheat.



17Slide credit: David Mortensen



18Slide credit: David Mortensen



19Slide credit: David Mortensen



20Slide credit: 
David Mortensen

● We only get an estimate this way, but we can obtain it by only counting 
simpler things: “our discontent”, “discontent”, “of our”, etc

● Ngram language modeling is a generalization of this observation 
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This assumption is the Markov assumption

Slide credit: David Mortensen



22Slide credit: David Mortensen



23Slide credit: David Mortensen



24Slide credit: David Mortensen



25Slide credit: David Mortensen

N-gram models have trouble with long-range dependencies



26Slide credit: David Mortensen
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Estimating n-gram probabilities
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Estimating bigram probabilities with the maximum likelihood 
estimate (MLE)

Slide credit: David Mortensen



<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>
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An example

Slide adapted from Jurafsky & Martin



can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Slide adapted from Jurafsky & Martin
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More examples: Berkeley Restaurant Project sentences



Out of 9222 sentences

Slide adapted from Jurafsky & Martin
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Raw bigram counts



Normalize by unigrams:

Result:

Slide adapted from 
Jurafsky & Martin
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Raw bigram probabilities



P(<s> I want english food </s>) =
P(I|<s>)   

× P(want|I)  
× P(english|want)   
× P(food|english)   
× P(</s>|food)

=  .000031

Slide adapted from Jurafsky & Martin
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Bigram estimates of sentence probabilities
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Slide credit: David Mortensen

Optimize computation
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The are high-performance toolkits for n-gram language modeling

Slide credit: David Mortensen



36

Perplexity and evaluating language models



37Slide credit: David Mortensen



38Slide credit: David Mortensen



39Slide credit: David Mortensen
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Perplexity evaluates the probability assigned by a model to a collection of test 
documents, controlling for length and is, thus, useful for evaluating LMs. 

A better model of a text is one which assigns a higher probability to words that 
actually occur in the test set. This will result in lower perplexity.

However: 

• It is a rather crude instrument 

• It sometimes correlates only weakly with performance on downstream tasks

• It’s only useful for pilot experiments 

• But it’s cheap and easy to compute, so it’s important to understand

Perplexity is an intrinsic metric for language modeling

Slide credit: David Mortensen



41Slide credit: David Mortensen



● Let’s suppose a sentence consisting of random digits
● What is the perplexity of this sentence according to a model that 

assign P=1/10 to each digit?
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Perplexity as branching factor

Slide adapted from Jurafsky & Martin
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Slide credit: David Mortensen



Perplexity evaluates how well our language model 
can predict the next words in our test set

I always order pizza with cheese and ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100
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Intuition of Perplexity

Slide adapted from Jurafsky & Martin

The Shannon Game



Training 38 million words, test 1.5 million words, 
WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Lower perplexity = better model

Slide adapted from Jurafsky & Martin
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Questions?
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