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CS 2731
Introduction to Natural Language Processing



● Quiz in class this Wed Oct 1. Readings to review:

○ Session 9: J+M 4.5-4.8, 4.13, 4.16

○ Session 10: J+M 5-5.2, 5.5-5.8, 5.10 

○ You will have 10 minutes to complete the quiz (until 2:40pm)

● Homework 2 has been released. Is due next Thu Oct 9

○ Michael will post the Kaggle competition soon (probably tomorrow)
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Course logistics: quiz and homework

https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html


● Next project deliverable: project proposal due Oct 16

○ Michael will post the requirements soon

○ For now, focus on finding related literature and datasets

○ Finding out what evaluation metric to use may require looking at other 
chapters of the textbook

○ Feel free to email or book office hours with Michael to discuss

● We have $150 total as a class to use on OpenAI LLM credits

● Michael is still looking into open-source models set up on School of 
Computing and Information servers
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Course logistics: project



● Click on this nbgitpuller link

○ Or find the link on the course website

● Open session10_word2vec.ipynb

● Run the first 2 cells while we go through slides, as they take awhile
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Start running notebook: examine word2vec embeddings

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main


● Vector semantics

● Distributional semantics

● Types of word vectors

● Word2vec

● Bias in word vectors

● Coding activity: explore word vectors
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Overview: vector semantics, static word embeddings
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Vector semantics
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Word representations in NLP draw on 2 areas of semantics

a. Vector semantics

b. Distributional semantics

Semantics: the study of meaning
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Modeling semantics as points in vector space

○ Words or other text segments are represented by vectors

○ Multiple dimensions

○ Nearer = more similar words

Vector semantics
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Term-document matrix: word vectors

Slide adapted from David Mortensen, Jurafsky & Martin
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Pairs of similar words?
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● Synonyms: big/large, couch/sofa, automobile/car

● Similar: sharing some element of meaning

○ coffee/tea, car/bicycle, cow/horse

● Related: by a semantic field

○ coffee/cup, scalpel/surgeon

Similarity and relatedness

Slide adapted from Jurafsky & Martin
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Distributional semantics
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"The meaning of a word is its use in the language" [Wittgenstein 1953]

"You shall know a word by the company it keeps" [Firth 1957]

"If A and B have almost identical environments we say that they 
are synonyms" [Harris 1954]

Distributional semantics

Slide adapted from Jurafsky & Martin
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Define the meaning of a word by its distribution in language use: 
its neighboring words or grammatical environments.

Distributional semantics
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide credit: David Mortensen
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Types of word vectors
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cat

presentation

dog

poster

● Similar words are nearby in vector ("semantic") 
space

● Build "semantic space" by seeing which words 
are nearby in text

Slide adapted from David Mortensen
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● Sparse embeddings (vectors from term-document matrix)
○ long (length of 20,000 to 50,000)
○ sparse: most elements are 0

● Dense embeddings (Word2vec)
○ short (length of 50-1000)
○ dense (most elements are non-zero)

Slide adapted from David Mortensen, Jurafksy & Martin
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Slide credit: David Mortensen
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● Static, neural embeddings

○ Fixed embeddings for word types

○ Word2Vec, GloVe

● Contextual embeddings

○ Embeddings for words vary by context

○ ELMo, BERT, LLMs

word embeddings

sparse dense

static contextual

Methods for learning short, dense word embeddings
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Word2vec
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● Instead of counting words, train a classifier on a binary prediction 
task

○ Is w1 likely to show up near w2? 

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin
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● Instead of counting words, train a classifier on a binary prediction 
task

○ Is w1 likely to show up near apricot? 

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin



● Instead of counting words, train a classifier on a binary prediction 
task

○ Is w1 likely to show up near apricot?

● Take the learned classifier weights as the word embeddings
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Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin



● Instead of counting words, train a classifier on a binary prediction 
task

○ Is w1 likely to show up near apricot?

● Take the learned classifier weights as the word embeddings

● Training techniques: skip-gram and CBOW
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Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin
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● Self-supervision [Bengio et al. 2003, Collobert et al. 2011]

● Use naturally occurring text as labels

● A word c that occurs near apricot in the corpus counts as the gold 
"correct answer" for supervised learning

Word2vec: training supervision

Slide adapted from Jurafsky & Martin
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1. Positive examples: the target word w and a neighboring context 
word cpos

2. Negative examples: Randomly sample other words cneg in the 
lexicon to pair with w

3. Use logistic regression to train a classifier to distinguish those two 
cases

4. Use the learned weights (W, C) as the word embeddings

Word2vec training overview

Slide adapted from Jurafsky & Martin
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Slide credit: David Mortensen
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● Start with randomly initialized context C and target word W 
matrices

● Go through the positive and negative training pairs, adjusting 
word vectors such that we:

○ Maximize the similarity of the target word, context word pairs  
(w, cpos) drawn from the positive data

○ Minimize the similarity of the (w, cneg) pairs drawn from the 
negative data.

Word2vec: learning embeddings

Slide adapted from Jurafsky & Martin
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Classifier input pairs:

(target word w, context word c)

Classifier output: probabilities that w occurs with c

P(+|w, c)

P(−|w, c) = 1 − P(+|w, c)

Skip-gram classifier

Slide adapted from Jurafsky & Martin
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● From input vectors, need to compare for similarity

● Start with dot product: sim(w,c) ≈ w ∙ c

● To turn this into a probability, use the sigmoid function from 
logistic regression:

Skip-gram classifier: calculating probabilities

Slide adapted from Jurafsky & Martin
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Slide adapted from David Mortensen, Jurafsky & Martin
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● Direction: We move in the reverse direction from the gradient of 
the loss function

● Magnitude: we move the value of this gradient 
d/dw L(P(+|w,c) + P(-|w,c)) weighted by a learning rate η

● Higher learning rate means move w faster

Reminder: one step of gradient descent

Slide adapted from Jurafsky & Martin



Maximize the similarity of the target with the actual context words, and 
minimize the similarity of the target with the k negative sampled non-
neighbor words. 
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Loss function for one w with cpos , cneg1 ...cnegk

Slide adapted from Jurafsky & Martin
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Updates on C and W

new context 
weights

old context 
weights

derivative of loss wrt cpos
learning 
rate

new target 
word weights

old context 
weights

learning 
rate derivative of loss wrt w

Word2vec training process

Slide adapted from Jurafsky & Martin
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cat [0.31, 0.24, 0.07, 0.65 … ]

presentation [0.65, 0.93, 0.16, 0.78 … ]
dog [0.37, 0.29, 0.06, 0.63 … ]

poster [0.57, 0.82, 0.21, 0.73 … ]

Summary: How to learn word2vec embeddings
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1. Start with randomly initialized word embeddings

2. From a corpus, extract pairs of words that co-occur (positive)

3. Extract pairs of words that don't co-occur (negative)

4. Train a classifier to distinguish between positive and negative 
examples by slowly adjusting all the embeddings to improve the 
classifier performance

5. Keep the weights as our word embeddings

Summary: How to learn word2vec embeddings

Slide adapted from Jurafsky & Martin
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● Can add representations for a word in W 
and in C together for final word vector for 
wi

● Can just keep W and throw away C

● Can find "nearest neighbors" of certain 
words with cosine similarity in embedding 
space

cat

presentation

dog

poster

Final embeddings

Slide adapted from Jurafsky & Martin
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Slide credit: David Mortensen
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● Paris : France :: Tokyo : Japan

● Sexist occupational stereotypes

○ father : doctor :: mother : nurse

○ man : computer programmer :: woman : homemaker

● Would be problematic to use embeddings in hiring searches for 
programmers

Embeddings reflect cultural biases [Bolukbasi et al. 2016]

Slide adapted from Jurafsky & Martin
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● NLP typically represents words as vectors in spaces where 
distance ≈ semantic similarity

● Word2vec learns static embeddings (vectors) for words by 
predicting which words occur together in training data

● These embeddings are effective in downstream NLP tasks, but 
also reflect social biases of training data text

Conclusion: vector semantics, static word embeddings



Coding activity
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● Click on this nbgitpuller link

○ Or find the link on the course website

● Open session10_word2vec.ipynb
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Notebook: examine word2vec embeddings

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
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