
Session 10: Vector semantics, word2vec

Michael Miller Yoder

September 29, 2025

1

CS 2731
Introduction to Natural Language Processing

● Quiz in class this Wed Oct 1. Readings to review:

○ Session 9: J+M 4.5-4.8, 4.13, 4.16

○ Session 10: J+M 5-5.2, 5.5-5.8, 5.10

○ You will have 10 minutes to complete the quiz (until 2:40pm)

● Homework 2 has been released. Is due next Thu Oct 9

○ Michael will post the Kaggle competition soon (probably tomorrow)

2

Course logistics: quiz and homework

https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html

● Next project deliverable: project proposal due Oct 16

○ Michael will post the requirements soon

○ For now, focus on finding related literature and datasets

○ Finding out what evaluation metric to use may require looking at other
chapters of the textbook

○ Feel free to email or book office hours with Michael to discuss

● We have $150 total as a class to use on OpenAI LLM credits

● Michael is still looking into open-source models set up on School of
Computing and Information servers

3

Course logistics: project

● Click on this nbgitpuller link

○ Or find the link on the course website

● Open session10_word2vec.ipynb

● Run the first 2 cells while we go through slides, as they take awhile

4

Start running notebook: examine word2vec embeddings

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main

● Vector semantics

● Distributional semantics

● Types of word vectors

● Word2vec

● Bias in word vectors

● Coding activity: explore word vectors

5

Overview: vector semantics, static word embeddings

6

Vector semantics

7

Word representations in NLP draw on 2 areas of semantics

a. Vector semantics

b. Distributional semantics

Semantics: the study of meaning

8

Modeling semantics as points in vector space

○ Words or other text segments are represented by vectors

○ Multiple dimensions

○ Nearer = more similar words

Vector semantics

9

Term-document matrix: word vectors

Slide adapted from David Mortensen, Jurafsky & Martin

10

Pairs of similar words?

11

● Synonyms: big/large, couch/sofa, automobile/car

● Similar: sharing some element of meaning

○ coffee/tea, car/bicycle, cow/horse

● Related: by a semantic field

○ coffee/cup, scalpel/surgeon

Similarity and relatedness

Slide adapted from Jurafsky & Martin

12

Distributional semantics

13

"The meaning of a word is its use in the language" [Wittgenstein 1953]

"You shall know a word by the company it keeps" [Firth 1957]

"If A and B have almost identical environments we say that they
are synonyms" [Harris 1954]

Distributional semantics

Slide adapted from Jurafsky & Martin

14

Define the meaning of a word by its distribution in language use:
its neighboring words or grammatical environments.

Distributional semantics

15
Slide credit: David Mortensen

16
Slide credit: David Mortensen

17
Slide credit: David Mortensen

18

Types of word vectors

19

cat

presentation

dog

poster

● Similar words are nearby in vector ("semantic")
space

● Build "semantic space" by seeing which words
are nearby in text

Slide adapted from David Mortensen

20

● Sparse embeddings (vectors from term-document matrix)
○ long (length of 20,000 to 50,000)
○ sparse: most elements are 0

● Dense embeddings (Word2vec)
○ short (length of 50-1000)
○ dense (most elements are non-zero)

Slide adapted from David Mortensen, Jurafksy & Martin

21
Slide credit: David Mortensen

22

● Static, neural embeddings

○ Fixed embeddings for word types

○ Word2Vec, GloVe

● Contextual embeddings

○ Embeddings for words vary by context

○ ELMo, BERT, LLMs

word embeddings

sparse dense

static contextual

Methods for learning short, dense word embeddings

23

Word2vec

24

● Instead of counting words, train a classifier on a binary prediction
task

○ Is w1 likely to show up near w2?

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin

25

● Instead of counting words, train a classifier on a binary prediction
task

○ Is w1 likely to show up near apricot?

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin

● Instead of counting words, train a classifier on a binary prediction
task

○ Is w1 likely to show up near apricot?

● Take the learned classifier weights as the word embeddings

26

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin

● Instead of counting words, train a classifier on a binary prediction
task

○ Is w1 likely to show up near apricot?

● Take the learned classifier weights as the word embeddings

● Training techniques: skip-gram and CBOW

27

Word2vec [Mikolov et al. 2013]

Slide adapted from Jurafsky & Martin

28

● Self-supervision [Bengio et al. 2003, Collobert et al. 2011]

● Use naturally occurring text as labels

● A word c that occurs near apricot in the corpus counts as the gold
"correct answer" for supervised learning

Word2vec: training supervision

Slide adapted from Jurafsky & Martin

29

1. Positive examples: the target word w and a neighboring context
word cpos

2. Negative examples: Randomly sample other words cneg in the
lexicon to pair with w

3. Use logistic regression to train a classifier to distinguish those two
cases

4. Use the learned weights (W, C) as the word embeddings

Word2vec training overview

Slide adapted from Jurafsky & Martin

30
Slide credit: David Mortensen

31

● Start with randomly initialized context C and target word W
matrices

● Go through the positive and negative training pairs, adjusting
word vectors such that we:

○ Maximize the similarity of the target word, context word pairs
(w, cpos) drawn from the positive data

○ Minimize the similarity of the (w, cneg) pairs drawn from the
negative data.

Word2vec: learning embeddings

Slide adapted from Jurafsky & Martin

32

Classifier input pairs:

(target word w, context word c)

Classifier output: probabilities that w occurs with c

P(+|w, c)

P(−|w, c) = 1 − P(+|w, c)

Skip-gram classifier

Slide adapted from Jurafsky & Martin

33

● From input vectors, need to compare for similarity

● Start with dot product: sim(w,c) ≈ w ∙ c

● To turn this into a probability, use the sigmoid function from
logistic regression:

Skip-gram classifier: calculating probabilities

Slide adapted from Jurafsky & Martin

34
Slide adapted from David Mortensen, Jurafsky & Martin

35

● Direction: We move in the reverse direction from the gradient of
the loss function

● Magnitude: we move the value of this gradient
d/dw L(P(+|w,c) + P(-|w,c)) weighted by a learning rate η

● Higher learning rate means move w faster

Reminder: one step of gradient descent

Slide adapted from Jurafsky & Martin

Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-
neighbor words.

36

Loss function for one w with cpos , cneg1 ...cnegk

Slide adapted from Jurafsky & Martin

37

Updates on C and W

new context
weights

old context
weights

derivative of loss wrt cpos
learning
rate

new target
word weights

old context
weights

learning
rate derivative of loss wrt w

Word2vec training process

Slide adapted from Jurafsky & Martin

38

cat [0.31, 0.24, 0.07, 0.65 …]

presentation [0.65, 0.93, 0.16, 0.78 …]
dog [0.37, 0.29, 0.06, 0.63 …]

poster [0.57, 0.82, 0.21, 0.73 …]

Summary: How to learn word2vec embeddings

39

1. Start with randomly initialized word embeddings

2. From a corpus, extract pairs of words that co-occur (positive)

3. Extract pairs of words that don't co-occur (negative)

4. Train a classifier to distinguish between positive and negative
examples by slowly adjusting all the embeddings to improve the
classifier performance

5. Keep the weights as our word embeddings

Summary: How to learn word2vec embeddings

Slide adapted from Jurafsky & Martin

40

● Can add representations for a word in W
and in C together for final word vector for
wi

● Can just keep W and throw away C

● Can find "nearest neighbors" of certain
words with cosine similarity in embedding
space

cat

presentation

dog

poster

Final embeddings

Slide adapted from Jurafsky & Martin

41
Slide credit: David Mortensen

42

● Paris : France :: Tokyo : Japan

● Sexist occupational stereotypes

○ father : doctor :: mother : nurse

○ man : computer programmer :: woman : homemaker

● Would be problematic to use embeddings in hiring searches for
programmers

Embeddings reflect cultural biases [Bolukbasi et al. 2016]

Slide adapted from Jurafsky & Martin

43

● NLP typically represents words as vectors in spaces where
distance ≈ semantic similarity

● Word2vec learns static embeddings (vectors) for words by
predicting which words occur together in training data

● These embeddings are effective in downstream NLP tasks, but
also reflect social biases of training data text

Conclusion: vector semantics, static word embeddings

Coding activity

44

● Click on this nbgitpuller link

○ Or find the link on the course website

● Open session10_word2vec.ipynb

45

Notebook: examine word2vec embeddings

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main

	Slide 1
	Slide 2: Course logistics: quiz and homework
	Slide 3: Course logistics: project
	Slide 4: Start running notebook: examine word2vec embeddings
	Slide 5: Overview: vector semantics, static word embeddings
	Slide 6: Vector semantics
	Slide 7: Semantics: the study of meaning
	Slide 8: Vector semantics
	Slide 9: Term-document matrix: word vectors
	Slide 10
	Slide 11: Similarity and relatedness
	Slide 12: Distributional semantics
	Slide 13: Distributional semantics
	Slide 14: Distributional semantics
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Types of word vectors
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Methods for learning short, dense word embeddings
	Slide 23: Word2vec
	Slide 24: Word2vec [Mikolov et al. 2013]
	Slide 25: Word2vec [Mikolov et al. 2013]
	Slide 26: Word2vec [Mikolov et al. 2013]
	Slide 27: Word2vec [Mikolov et al. 2013]
	Slide 28: Word2vec: training supervision
	Slide 29: Word2vec training overview
	Slide 30
	Slide 31: Word2vec: learning embeddings
	Slide 32: Skip-gram classifier
	Slide 33: Skip-gram classifier: calculating probabilities
	Slide 34
	Slide 35: Reminder: one step of gradient descent
	Slide 36: Loss function for one w with cpos , cneg1 ...cnegk
	Slide 37: Word2vec training process
	Slide 38: Summary: How to learn word2vec embeddings
	Slide 39: Summary: How to learn word2vec embeddings
	Slide 40: Final embeddings
	Slide 41
	Slide 42: Embeddings reflect cultural biases [Bolukbasi et al. 2016]
	Slide 43: Conclusion: vector semantics, static word embeddings
	Slide 44: Coding activity
	Slide 45: Notebook: examine word2vec embeddings

