CS 2731
Introduction to Natural Language Processing

Session 11: Neural networks part 1

Michael Miller Yoder
October 1, 2025

University of
Pittsb};lrgh School of Computing and Information

e GO to Quizzes > Quiz 10-01 on Canvas

e You have until 2:40pm to complete it

e Allowed resources
o Textbook
o Your notes (on a computer or physical)
o Course slides and website

e Resources not allowed

o Generative Al

o Internet searches

Course logistics: homework

e Homework 2 Is due next Thu Oct 9

o The Kaggle competition has been posted

https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html

Course logistics: project

e Next project deliverable: project proposal due Oct 16

o Will include plans for task, data, methods, evaluation
o Include example input and output
o Literature review of at least 3 related papers

o Feel free to email or book office hours with Michael to discuss
e We have $150 total as a class to use on OpenAl LLM credits

e Access to open-source LLM set up on School of Computing and
Information servers for APl access Is coming soon

o Gemma, LLaMa, Deepseek

https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal

Midterm course evaluation (OMETs)

All types of feedback are welcome
(critical and positive)

e Completely anonymous, will not affect grades

e Let me know what's working and what to
Improve on while the course is still running!

e Please be as specific as possible

e Available until next Mon Oct 6

https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg
https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg

Structure of this course

MODULE 1 Introduction and text processing text normalization, machine learning, NLP tasks

Approaches How text is represented NLP tasks

e iIRav statistical machine learning n-grams language modeling
text classification

\[ODIVIRIEM neural networks static word vectors text classification

MODULES Sequence labeling and parsing

MODULE6 NLP applications and ethics

Lecture overview: neural networks part 1

e Neural network fundamentals

e Non-linear activation functions

e Feedforward neural networks as classifiers

e Feedforward neural networks with word embedding input

e Coding activity

Neural network fundamentals

This is in your brain

Cell body

AN
(\
Nucleus{ //[

Endoplasmic
reticulum

Axon

Axon hilw\K Synaptic terminals

—

Golgi apparatus

Mitochondrion : Dendrite

/ s& Dendritic branches

By BruceBlaus - Own work, CC BY 3.0,
slide adapted from Jurafsky & Martin https://commons.wikimedia.org/w/index.php?curid=28761830

Neural network unit: This is not in your brain

Output value y

Non-linear transform

Welghted sum
Weights

Input layer X, X, X; +1

10
Slide adapted from jurafsky & Martin

The Variables in Our Very Important Formula

x A vector of features of n dimensions (like number of positive sentiment
words, length of document, etc.)

w A vector of weights of n dimensions specifying how discriminative each
feature Is

b A scalar bias term that shifts z
z The raw score

y A random variable (e.g.,, y = 1 means positive sentiment and y = 0 means
negative sentiment

11
Slide adapted from David Mortensen

The Fundamentals

The fundamental equation that describes a unit of a neural network should look very
familiar:

z:b+ZW,-xf- (1)

Which we will represent as
Z=w-xX+0b (2)

But we do not use z directly. Instead, we pass it through a non-linear function, like the

sigmoid function:
1

T 1+e? G)

(which has some nice properties even though, in practice, we will prefer other functions
like tanh and RelU).

y=o0(2)

12

Slide adapted from David Mortensen

A Unit Illustrated

X1

W1

Wo Z a
X2 > o y
X3

Take, for example, a scenario in which our unit has the weights [0, 0.4, 0.2] and the bias
term 0.4 and the input vector x has the values [0.3, 0.2, 0.9].

13

Slide adapted from David Mortensen

Filling in the Input Values and Weights

0.3

\
0.4 Z a

0.2 0> O y

y

0.9

1%

Slide adapted from David Mortensen

Multiplying the Input Values and Weights and Summing Them (with the Bias Term)

0.3

\
0.4 0.69 a

0.2 1 X o y

%

0.9

Z = X1W1 + XaWs + X3W3 + b = 0.1(0.3) + 0.4(0.2) + 0.2(0.9) + 0.4 = 0.69 (4)

15

Slide adapted from David Mortensen

Applying the Activation Function (Sigmoid)

0.3

\
0.4 0.69 0.67

0.2)Y o — 0.67
0.2

B

0.9

1 _

16

Slide adapted from David Mortensen

Non-linear activation functions

17

Non-Linear Activation Functions

We're already seen the sigmoid for logistic

regression:
1.0
° ° 08
Sigmold
y
1 0.4f
y=0@= 1=

0.0

18
Slide adapted from jurafsky & Martin

Nonlinear activation functions besides sigmoid

Most common:

1.0 10
_ -Z —_
y = e“-e y = max(z 0)
0s Y = 5
-Z
3 e+ e 5
e 2
S 0.0 %0
I g
! [
> =
-0.5 -5
~1.05 =5 0 5 10 —10r5 5 0 5 10

tanh RelU
Rectified Linear -

Feedforward neural networks

20

Adding multiple units to a neural network
Increases Its power to learn patterns in
data. Feedforward Neural Nets (FFNNs or
MLPs)

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for
historical reasons

Slide adapted from jurafsky & Martin

The simplest FFNN Is just binary logistic
regression
(INPUT LAYER = feature vector)

23

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Output layer ‘ y=ocw-:x+b)
(0 node) (yis a
scalar)
W Wi Wi b (scalar)
(vector)

ot ® @ @ & @

Slide adapted from jurafsky & Martin

24

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

YI Yn
Output layer ‘ ‘ ‘ y = softmax(Wx + b)
(softmax y IS a vector
nodes)
\%Y b
W IS a b Is a vector
matrix

Input layer ‘ ‘ ‘ ‘ ‘

scalars

Slide adapted from jurafsky & Martin

25

The real power comes when multiple
layers are added

26

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh

hidden units O 0 0 h=cWx+b)

(O node) Could be
W b RelU

or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

27

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh
hidden units W.. ‘ h=oc(Wx+Db)
(0 node) e

\YY b vector

Input layer
(vector) ‘

Slide adapted from jurafsky & Martin

2

8

Two-Layer Network with scalar output

Output layer ‘ y =0a(z)ylisascalar

(0 node) U z=Uh

hidden units O 0 0 h=cWx+b)

(O nOde> Could be
W b ReLU

Or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

29

Two-Layer Network with softmax output

O @ vy = softmax(z)

Output

layer U z=Uh

(0 node) y is a vector

hidden units © OO0 hr=cWx+b)

(O nOde> Could be
\YY b ReLU

Or tanh

Input layer
(vector) ‘ ‘ ‘ ‘ ‘

Slide adapted from jurafsky & Martin

30

Multi-layer Notation

y = al?l

al?2l = g[z](z[z]) sigmoid or softmax

2] = W[z]a[l] + b[Z]

W12 bL2] z

' ‘ ‘ a[l] = g[l] (Z[l]) ReLU
[1] = wtlglo] 4 plil

Z a

Wi bll]

® @6 0 ® @~
31

Slide adapted from jurafsky & Martin

A Forward Pass in Terms of Multi-Layer Notation

qlo] e
X1

W1

Wi 1] qll] for each i €1.n do |
Xo) o y Al Wiilgli-1 4 pli

Wi alll < glil(zI

end for

X3 y < alnl

32

Slide credit: David Mortensen

Replacing the bias unit

Instead of:

Slide adapted from jurafsky & Martin

We'll do this:

.AW. =

33

Feedforward neural nets as classifiers

34

Classification: Sentiment Analysis

We could do exactly what we did with logistic regression
Input layer are binary features as before

Output layer is 0 or 1
U

35
Slide adapted from jurafsky & Martin

Sentiment Features

Var Definition
X1 count(positive lexicon) € doc)
x; count(negative lexicon) € doc)

{ 1 if “no” < doc

X .
e (0 otherwise

x4 count(lst and 2nd pronouns € doc)
{ 1 if " e doc

X .
s 0 otherwise

x¢ log{word count of doc)

36
Slide adapted from jurafsky & Martin

Feedforward nets for simple classification

Logisti 2-layer
ogistic. W feedforward
Regression S

f, f, f

. f fa

Just adding a hidden layer to logistic regression

 allows the network to use non-linear interactions between
features

* which may (or may not) improve performance.

Slide adapted from jurafsky & Martin

37

Feedforward neural networks with
word embedding input

38

Even better: representation learning

The real power of deep learning comes from the
ability to learn features from the data

Instead of using hand-built human-engineered
features for classification

Use learned representations like embeddings!

39

Slide adapted from jurafsky & Martin

Neural net classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

Hidden layer

Projection layer

embeddings
E embedding tor embedding for embedding for
word 534 word 23864 word 7
The dessert is
Slide adapted from Jurafsky & Martin W1 Wo W3

40

Issue: texts come in different sizes

@@ 9. 00 [F8.:0:.:00 (00::0:-00

! f

This assumes a fixed size length (3)! e“li’if%‘??f“ pberstt St i
5 . 5 !

Kind of unrealistic. [The | dessert | 5 |

Some simple solutions: i vy w3

1. Make the input the length of the longest review
« |f shorter then pad with zero embeddings
« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a
word) to represent all the words

e Take the mean of all the word embeddings
« Take the element-wise max of all the word embeddings
 For each dimension, pick the max value from all words

41
Slide adapted from jurafsky & Martin

Coding activity

42

Notebook: feedforward neural network

e Click on this nbgitpuller link

o Or find the link on the course website

e Open session11_ffnn.ipynb

43

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main

Questions?

A

	Slide 1
	Slide 2: Quiz
	Slide 3: Course logistics: homework
	Slide 4: Course logistics: project
	Slide 5: Midterm course evaluation (OMETs)
	Slide 6: Structure of this course
	Slide 7: Lecture overview: neural networks part 1
	Slide 8: Neural network fundamentals
	Slide 9: This is in your brain
	Slide 10: Neural network unit: This is not in your brain
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Non-linear activation functions
	Slide 18: Non-Linear Activation Functions
	Slide 19: Nonlinear activation functions besides sigmoid
	Slide 20: Feedforward neural networks
	Slide 21
	Slide 22: Feedforward Neural Networks
	Slide 23
	Slide 24: Binary Logistic Regression as a 1-layer Network
	Slide 25: Multinomial Logistic Regression as a 1-layer Network
	Slide 26
	Slide 27: Two-Layer Network with scalar output
	Slide 28: Two-Layer Network with scalar output
	Slide 29: Two-Layer Network with scalar output
	Slide 30: Two-Layer Network with softmax output
	Slide 31: Multi-layer Notation
	Slide 32
	Slide 33: Replacing the bias unit
	Slide 34: Feedforward neural nets as classifiers
	Slide 35: Classification: Sentiment Analysis
	Slide 36: Sentiment Features
	Slide 37: Feedforward nets for simple classification
	Slide 38: Feedforward neural networks with word embedding input
	Slide 39: Even better: representation learning
	Slide 40: Neural net classification with embeddings as input features!
	Slide 41: Issue: texts come in different sizes
	Slide 42: Coding activity
	Slide 43: Notebook: feedforward neural network
	Slide 44

