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Course logistics: quiz

e Quizin class this Wed Oct 8. Readings to review:
o Session 11: J+M 6-6.1, 6.3-6.5
o Session 12: J+M 6.6, 13-13.2

o You will have 10 minutes to complete the quiz (until 2:40pm)



Course logistics: homework and project

e Homework 2 is due this Thu Oct 9

e Next project deliverable: project proposal due Oct 16

o Will include plans for task, data, methods, evaluation

o Include example input and output

o Literature review of at least 3 related papers

o Feel free to email or book office hours with Michael to discuss

e \We have $150 total as a class to use on OpenAl LLM credits

e Access to open-source LLM set up on School of Computing and Information
servers for APl access IS coming soon

o Gemma, LLaMa, Deepseek


https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal

Midterm course evaluation (OMETs)

All types of feedback are welcome
(critical and positive)

e Completely anonymous, will not affect grades

e Let me know what's working and what to
Improve on while the course is still running!

e Please be as specific as possible

e Available until 11:59pm today, Mon Oct 6


https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg
https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg

Review: neural networks

Discuss with a neighbor:

1. Describe the steps of computation that occurs at
every level of a neural network

2. What Is used as typical input to neural networks
In NLP?



Lecture overview: neural networks part 2

e Training neural networks
e Recurrent neural networks (RNNs)

e Review activity



Training feedforward neural networks




Intuition: training a 2-layer Network

} Loss function L(¥, y)

Backward

* =t

Forward pass

Training instance

Slide adapted from jurafsky & Martin



Remember stochastic gradient descent
from the logistic regression lecture—find
gradient and optimize

Slide credit: David Mortensen



The Intuition Behind Training a 2-Layer Network

For every training tuple (x,y)

1. Run forward computation to find the estimate y

2. Run backward computation to update weights
- For every output node

- Compute the loss L between true y and estimated §
- For every weight w from the hidden layer to the output layer: update the weights

- For every hidden node

- Assess how much blame it deserves for the current answer
- From every weight w from the input layer to the hidden layer
- Update the weight
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Slide credit: David Mortensen



Computing the gradient requires finding
the derivative of the loss with respect to
each weight in every layer of the network.
Error backpropagation through
computation graphs.

Slide credit: David Mortensen



Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to
weights % L(f(x;w),y)

To tell us how to adjust weights for each training item
> Move them in the opposite direction of the gradient

d
Wiy = We — T?%LCE(}C(X; w),Y)

o For logistic regression

aLCE(yay)

Slide adapted from jurafsky & Martin & WJ

= [o(w-x+b)—yx; .



Where did that derivative come from?

Using the chain rule of derivatives! f(x) = u(v(x)) ﬂ — du : dv
dx dv dx
- Derivative of the weighted sum
a Derivative of the Activation
Derivative of the Loss
() 0L 9L dy 0z
& — =
wy /Wyl W\ b awl ay 0z awl

13
Slide adapted from jurafsky & Martin



How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!

What about deeper networks? For training, we need the derivative of the
loss with respect to each weight in every layer of the network

®* Lots of layers, different activation functions?

®* Butthe loss is computed only at the very end of the network!
Solution:

® Even more use of the chain rule!!

® This process is called error backpropagation (Rumelhart et al 1986)

14
Slide adapted from jurafsky & Martin



Backward differentiation on a two layer network
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Slide adapted from jurafsky & Martin



Backward differentiation on a two layer network

. X oL AL dy aal? 9712 gqaltl gl
0Wy;  dy 0al?l 9zl aalll 9z gy

Slide adapted from jurafsky & Martin



For training, we need the derivative of the loss with
respect to weights in early layers of the network

« But loss Is computed only at the very end of the
network!

Solution: backpropagation

Given the derivatives of all the functions in it we can
automatically compute the derivative of the loss with
respect to these early weights.
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Recurrent neural networks (RNNs)
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FFNNs take an |

nput of fixed

dimensions—a fixed number of features, a

fixed number o

" tokens
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The number tokens in a text—even a
sentence—can be arbitrarily large (or
short)

Slide credit: David Mortensen



RNNs help us address this issue

Slide credit: David Mortensen



The architecture of an RNN

e Special kind of multilayer neural network for modeling sequences
e Hidden layers between the input and output receive input not just

form the input layer, but also from the hidden layer at a preceding
timestep

e RNNs can “remember” information from earlier on
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Slide credit: David Mortensen



An RNN Language Model
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Slide credit: David Mortensen
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Generation with RNN LMs

e At each time step t, we sample w, from P(W,]| ... ), and feed it to the
next timestep!
e LM with this kind of generation process Is called autoregressive LM

Sample wy Sample w,

AN
. ]
ho | hy .

A Beginning-of-sentence

(BOS) token 24
Slide adapted from Tianxing He



Training an RNN Language Model
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Slide credit: David Mortensen



Training an RNN Language Model
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Slide credit: David Mortensen



Training an RNN Language Model

- Get a big corpus of text, which is a sequence of words x(V, ..., x(7)
- Feed it into the RNN-LM, computing output distribution () for every step t.

- Loss function on step t Is cross-entropy between the predicted probability
distribution ¥ and the true next word y( (one-hot for x(t+1):

JO@6) = CE(yD,§0) = — 3"y log 91 = — log 95,

weV

- Average this to get overall loss for the entire training set:
Zj(t (0 -,- Z Xt+1
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Slide credit: David Mortensen



Computing Loss and Gradients in Practice

- In principle, we could compute loss and gradients across the whole corpus
(x(M, ..., x(D) but that would be incredibly expensive!

T
(6) = =3 J6)
t=1

- Instead, we usually treat X, ... x() as a document, or even a sentence

- This works much better with Stochastic Gradient Descent, which lets us
compute loss and gradients for little chunks and update as we go.

- Actually, we do this in batches: compute J(#) for a batch of sentences; update

weights; repeat.
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Slide credit: David Mortensen



We Will Skip the Details of Backpropogation in RNNs for Now

- The fact that training RNNs involves backpropagation over timesteps,
summing as you go, means that it (the backpropagation through time
algorithm) is a bit more complicated than backpropagation in feedforward
neural networks.

- We will skip these details for now, but you will want to learn them if you are
doing serious work with RNNs.
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Slide credit: David Mortensen



Review activity
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These concepts are confusing!

| don't expect you to understand the intuition of backpropagation or RNNs
the first time around. With a group, decide which concept you find most

confusing:

1. Neural network training and backpropagation

2. RNNSs

Make a list of questions you have about the concept you are most confused
about. Then find a group that might be comfortable with the concept you
find confusing. Maybe they can answer your questions! | am also available
to answer questions. The textbook is also a great resource!
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