CS 2731
Introduction to Natural Language Processing

Session 12: Neural networks part 2

Michael Miller Yoder
October 6, 2025

University of
Pittsb};lrgh School of Computing and Information

Course logistics: quiz

e Quizin class this Wed Oct 8. Readings to review:
o Session 11: J+M 6-6.1, 6.3-6.5
o Session 12: J+M 6.6, 13-13.2

o You will have 10 minutes to complete the quiz (until 2:40pm)

Course logistics: homework and project

e Homework 2 is due this Thu Oct 9

e Next project deliverable: project proposal due Oct 16

o Will include plans for task, data, methods, evaluation

o Include example input and output

o Literature review of at least 3 related papers

o Feel free to email or book office hours with Michael to discuss

e \We have $150 total as a class to use on OpenAl LLM credits

e Access to open-source LLM set up on School of Computing and Information
servers for APl access IS coming soon

o Gemma, LLaMa, Deepseek

https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal

Midterm course evaluation (OMETs)

All types of feedback are welcome
(critical and positive)

e Completely anonymous, will not affect grades

e Let me know what's working and what to
Improve on while the course is still running!

e Please be as specific as possible

e Available until 11:59pm today, Mon Oct 6

https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg
https://go.blueja.io/Iq36newH2UeDZRnTEA4pDg

Review: neural networks

Discuss with a neighbor:

1. Describe the steps of computation that occurs at
every level of a neural network

2. What Is used as typical input to neural networks
In NLP?

Lecture overview: neural networks part 2

e Training neural networks
e Recurrent neural networks (RNNs)

e Review activity

Training feedforward neural networks

Intuition: training a 2-layer Network

} Loss function L(¥, y)

Backward

* =t

Forward pass

Training instance

Slide adapted from jurafsky & Martin

Remember stochastic gradient descent
from the logistic regression lecture—find
gradient and optimize

Slide credit: David Mortensen

The Intuition Behind Training a 2-Layer Network

For every training tuple (x,y)

1. Run forward computation to find the estimate y

2. Run backward computation to update weights
- For every output node

- Compute the loss L between true y and estimated §
- For every weight w from the hidden layer to the output layer: update the weights

- For every hidden node

- Assess how much blame it deserves for the current answer
- From every weight w from the input layer to the hidden layer
- Update the weight

10

Slide credit: David Mortensen

Computing the gradient requires finding
the derivative of the loss with respect to
each weight in every layer of the network.
Error backpropagation through
computation graphs.

Slide credit: David Mortensen

Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to
weights % L(f(x;w),y)

To tell us how to adjust weights for each training item
> Move them in the opposite direction of the gradient

d
Wiy = We — T?%LCE(}C(X; w),Y)

o For logistic regression

aLCE(yay)

Slide adapted from jurafsky & Martin & WJ

= [o(w-x+b)—yx; .

Where did that derivative come from?

Using the chain rule of derivatives! f(x) = u(v(x)) ﬂ — du : dv
dx dv dx
- Derivative of the weighted sum
a Derivative of the Activation
Derivative of the Loss
() 0L 9L dy 0z
& — =
wy /Wyl W\ b awl ay 0z awl

13
Slide adapted from jurafsky & Martin

How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight
layer: the last one!

What about deeper networks? For training, we need the derivative of the
loss with respect to each weight in every layer of the network

®* Lots of layers, different activation functions?

®* Butthe loss is computed only at the very end of the network!
Solution:

® Even more use of the chain rule!!

® This process is called error backpropagation (Rumelhart et al 1986)

14
Slide adapted from jurafsky & Martin

Backward differentiation on a two layer network

15
Slide adapted from jurafsky & Martin

Backward differentiation on a two layer network

. X oL AL dy aal? 9712 gqaltl gl
0Wy; dy 0al?l 9zl aalll 9z gy

Slide adapted from jurafsky & Martin

For training, we need the derivative of the loss with
respect to weights in early layers of the network

« But loss Is computed only at the very end of the
network!

Solution: backpropagation

Given the derivatives of all the functions in it we can
automatically compute the derivative of the loss with
respect to these early weights.

17

Recurrent neural networks (RNNs)

18

FFNNs take an |

nput of fixed

dimensions—a fixed number of features, a

fixed number o

" tokens

19

The number tokens in a text—even a
sentence—can be arbitrarily large (or
short)

Slide credit: David Mortensen

RNNs help us address this issue

Slide credit: David Mortensen

The architecture of an RNN

e Special kind of multilayer neural network for modeling sequences
e Hidden layers between the input and output receive input not just

form the input layer, but also from the hidden layer at a preceding
timestep

e RNNs can “remember” information from earlier on

l V
PN Y-
w

// "\\
|‘ h(‘) }.
\\ 4 \ 4
Unfold — A A A -
U U U U

x > " x*

22
Slide credit: David Mortensen

An RNN Language Model

0.3 refuse
0.2 accept
~ t) _ (1) [V 0.1 take
y(= softmax(Uh*™ + by) € R 0.1 understand
h(0) K1) h(2) H(3) h(#) h(5) h(6) h(7) h(8)
hidden states @ m ﬂ [3| m Iil m 0
h® = oWphED 4+ Wee® + by) : >= :: ~: :: >: : :
h(9) is the initial hidden state o " g " e Wh g W H Whole " lg Y e W
WQ We We We WE’
.)
word embeddings e() o2 @O o(3) ol4) (5 e(6) e(?) e(®
o) — Ey(D) @
)
A
‘[E E TE ‘[E WE
one-hot vectors I'm gonna make him an offer he can't
X([) c R|V| xU) x(2) X(3) X(‘{*) X(S) x(ﬁ) x(?) X(S)

Slide credit: David Mortensen

23

Generation with RNN LMs

e At each time step t, we sample w, from P(W,]| ...), and feed it to the
next timestep!
e LM with this kind of generation process Is called autoregressive LM

Sample wy Sample w,

AN
.]
ho | hy .

A Beginning-of-sentence

(BOS) token 24
Slide adapted from Tianxing He

Training an RNN Language Model

1(1}(9) ;(ZJ(Q) j(3)(9) j(‘*)(g)

A

4 i

]
(%]
—

>
—
w
—

]
—
o~
—

-
>
>
.
>
-
>

=
=
c
=

K] K@) h(4)

J

J

A 4

%—j;+ooookg%oooo
[oooo}ig{oooo
}?gﬁoooo

Y

}jg%oooo

@ @
e(l) e(2) PE el4)| @
@ @
e L
offer he can't
x(1) x(2) x(3) «(%)

25

Slide credit: David Mortensen

Training an RNN Language Model

‘I T
Moy + J@A) + 18 () + JB)(e) + --- =1(8) = }ZJUJ(G)
A h A A =1
9(1) 9(2) 9(3) 9(‘0
A 3 A A
U U] U
AL p@1 pG] pA)]

A 4

%—j;+ooookg%oooo
[0000}75{0000
kg{oooo

Y

}jg{oooo

@ @
e(1) e(2) Cle o4 e
@ @
L L
offer he can't
x(1) x(2) x(3) «(%)

26

Slide credit: David Mortensen

Training an RNN Language Model

- Get a big corpus of text, which is a sequence of words x(V, ..., x(7)
- Feed it into the RNN-LM, computing output distribution () for every step t.

- Loss function on step t Is cross-entropy between the predicted probability
distribution ¥ and the true next word y((one-hot for x(t+1):

JO@6) = CE(yD,§0) = — 3"y log 91 = — log 95,

weV

- Average this to get overall loss for the entire training set:
Zj(t (0 -,- Z Xt+1

27

Slide credit: David Mortensen

Computing Loss and Gradients in Practice

- In principle, we could compute loss and gradients across the whole corpus
(x(M, ..., x(D) but that would be incredibly expensive!

T
(6) = =3 J6)
t=1

- Instead, we usually treat X, ... x() as a document, or even a sentence

- This works much better with Stochastic Gradient Descent, which lets us
compute loss and gradients for little chunks and update as we go.

- Actually, we do this in batches: compute J(#) for a batch of sentences; update

weights; repeat.

28

Slide credit: David Mortensen

We Will Skip the Details of Backpropogation in RNNs for Now

- The fact that training RNNs involves backpropagation over timesteps,
summing as you go, means that it (the backpropagation through time
algorithm) is a bit more complicated than backpropagation in feedforward
neural networks.

- We will skip these details for now, but you will want to learn them if you are
doing serious work with RNNs.

29

Slide credit: David Mortensen

Review activity

30

These concepts are confusing!

| don't expect you to understand the intuition of backpropagation or RNNs
the first time around. With a group, decide which concept you find most

confusing:

1. Neural network training and backpropagation

2. RNNSs

Make a list of questions you have about the concept you are most confused
about. Then find a group that might be comfortable with the concept you
find confusing. Maybe they can answer your questions! | am also available
to answer questions. The textbook is also a great resource!

31

	Slide 1
	Slide 2: Course logistics: quiz
	Slide 3: Course logistics: homework and project
	Slide 4: Midterm course evaluation (OMETs)
	Slide 5: Review: neural networks
	Slide 6: Lecture overview: neural networks part 2
	Slide 7: Training feedforward neural networks
	Slide 8: Intuition: training a 2-layer Network
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Reminder: gradient descent for weight updates
	Slide 13: Where did that derivative come from?
	Slide 14: How can I find that gradient for every weight in the network?
	Slide 15: Backward differentiation on a two layer network
	Slide 16: Backward differentiation on a two layer network
	Slide 17: Summary
	Slide 18: Recurrent neural networks (RNNs)
	Slide 19
	Slide 20
	Slide 21
	Slide 22: The architecture of an RNN
	Slide 23
	Slide 24: Generation with RNN LMs
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Review activity
	Slide 31: These concepts are confusing!

