
● Go to Quizzes > Quiz 10-08 on Canvas

● You have until 2:40pm to complete it

● Allowed resources

○ Textbook

○ Your notes (on a computer or physical)

○ Course slides and website

● Resources not allowed

○ Generative AI

○ Internet searches
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Quiz
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Source: Ramsri Goutham



Session 13: Transformers part 1

Michael Miller Yoder

October 8, 2025
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CS 2731
Introduction to Natural Language Processing



● Homework 2 is due tomorrow, Thu Oct 9
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Course logistics: homework

https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html
https://michaelmilleryoder.github.io/cs2731_fall2025/hw2.html


● Next project deliverable: project proposal due next Thu Oct 16

○ Will include plans for task, data, methods, evaluation

○ Compare multiple approaches, including an LLM-based approach

○ Literature review of at least 3 related papers

■ Baselines to compare your approach to

○ Feel free to email or book office hours with Michael to discuss

● We have $150 total as a class to use on OpenAI LLM credits

● Access to open-source LLM set up on School of Computing and Information 
servers for API access is coming soon

○ Gemma, LLaMa, Deepseek
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Course logistics: homework and project

https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal
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Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

neural networks static word vectors text classification

transformers and LLMs contextual word vectors language modeling
text classification

Sequence labeling and parsing named entity recognition, dependency parsingMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Introduction and text processing text normalization, machine learning, NLP tasks

NLP applications and ethics machine translation, chatbots, search engines, biasMODULE 6



6 responses out of 17 students (35%)

● What’s been helping students learn

○ Lectures, discussions

○ Notebooks, including going through them as a class

○ Quizzes to keep in check with previous classes’ concepts

● Changes

○ More real-life examples instead of just formulas

○ Some quiz questions could be clearer
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Midterm OMET feedback



● Self-attention

● Multi-headed attention

● Transformer blocks

● Activity: work through self-attention
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Lecture overview: Transformers part 1



● Self-attention

● Multi-headed attention

● Transformer blocks

● Activity: work through self-attention

● From Vaswani et al. 2017, “Attention 
is all you need” paper
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Lecture overview: Transformers part 1
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Contextual word embeddings



They are static!  The embedding for a word doesn't reflect 
how its meaning changes in context.

The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for 
"it"?

Problem with static embeddings (word2vec)

Slide adapted from Jurafsky and Martin



• Intuition: a representation of meaning of a word 
should be different in different contexts!

• Contextual embedding: each word has a different 
vector that expresses different meanings 
depending on the surrounding words

• How to compute contextual embeddings? Attention

Contextual Embeddings

Slide adapted from Jurafsky and Martin



The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired

The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken 
or the street

Contextual Embeddings

Slide adapted from Jurafsky and Martin
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Self-attention



● Build up the contextual embedding from a word by 
selectively integrating information from all the 
neighboring words

● We say that a word "attends to" some neighboring 
words more than others

Intuition of self-attention

Slide adapted from Jurafsky and Martin



Self-attention illustrated

Source: The Illustrated Transformer



A mechanism for helping compute the embedding for a token 
by selectively attending to and integrating information from 
surrounding tokens (at the previous layer).

More formally: a method for doing a weighted sum of vectors.

Attention definition

Slide adapted from Jurafsky and Martin



High-level idea: we'll represent 3 separate roles the vector for 
each word, xi plays:

• query: As the current element being compared to the other 
inputs. 

• key: as an input that is being compared to the current element 
to determine a similarity

• value: a value of a preceding element that gets weighted and 
summed 

An actual attention head: slightly more complicated

Slide adapted from Jurafsky and Martinc
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Attention as a soft, averaging lookup table

Slide credit: John Hewitt



● We'll use matrices to project each vector xi into a 
representation of its role as query, key, value:

• query: WQ

• key: WK

• value: WV

Parameters: weight matrices for queries, keys and values

Slide adapted from Jurafsky and Martinc



● Given these 3 representation of xi

● To compute the similarity of current element xi with 
some element (for self-attention) xj

● We’ll use dot product between qi and kj. 

● And instead of summing up xj, we'll sum up vj

An actual attention head: slightly more complicated

Slide adapted from Jurafsky and Martinc



Transformer self-attention
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Multi-headed attention
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Slide credit: David Mortensen
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Hypothetical example of multi-headed attention

Slide credit: John Hewitt



36

Q

K

V

M

optics
advanced

who
Strickland

awards
committee

Nobel

A

committee awards Strickland advanced opticswhoNobel

Transformer self-attention

Source: Emma Strubell



Multi-head self-attention
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Multi-head self-attention
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Add a feedforward neural transformation for nonlinearity

committee awards Strickland advanced opticswhoNobel
Source: Emma Strubell
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Transformer blocks
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Transformer blocks

Each block consists of:

• Self-attention

• Layer normalization and residual 
connections: tricks to optimize learning

• Feedforward neural network

Output: 1 vector for every input token

Slide adapted from Jurafsky and Martin,  John Hewitt



42

Residual connections [He et al. 2016]

Slide credit: John Hewitt
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Layer normalization [Ba et al. 2016]

Slide credit: John Hewitt



● Transformers are a high-performing NLP architecture based on self-
attention

● Transformer blocks perfom a number of transformations on vectors 
for input tokens, including integrating information from the 
surrounding tokens (self-attention)

● Transformer blocks produce one output vector per each input token, 
which is contextual, i.e. varies depending on what words surround 
the token

● Self-attention computation is easily parallelizable
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Wrapping up
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Questions?
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