
Session 14: Transformers part 2, introduction to LLMs

Michael Miller Yoder

October 13, 2025

1

CS 2731
Introduction to Natural Language Processing

● This Wed Oct 15: project peer group feedback

○ Michael has not completely planned this yet, but come with ideas for your
proposal and lingering questions you have that classmates may be able to
help with

● Next project deliverable: project proposal due this Thu Oct 16

○ Will include plans for task, data, methods, evaluation

○ Compare multiple approaches, including an LLM-based approach

○ Literature review of at least 3 related papers

■ Baselines to compare your approach to

○ Feel free to email or book office hours with Michael to discuss
2

Course logistics: project

https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal

● Project proposal presentations in-class next Mon Oct 20

○ Michael will start a shared PowerPoint that you will add slides to, along with
instructions

○ Ungraded

● LLM access

○ We have $150 total as a class to use on OpenAI LLM credits

○ Access to open-source LLM set up on School of Computing and Information
servers for API access is coming soon

■ Gemma, LLaMa, Deepseek

3

Course logistics: project

● Congrats to Surabhi,
Chase, Nate and Lucy!

● Michael is planning on
grading HW2 this week

4

Course logistics:
Homework 2

5

How to do a literature review

● Look for NLP papers related to your topic in ACL Anthology, Semantic
Scholar, and Google Scholar

● How have others approached your task or similar tasks? What are other NLP
papers that use the same dataset or domain as your project?

● For each paper, note:
○ What they cite in their related work sections (find those papers, iterate)
○ Data
○ Methods
○ Findings

● For at least 3 papers, organize them into themes of approaches, datasets,
findings

● Ok: X paper did this, Y paper did this, Z paper did that
● Good: X and Y papers did this, while Z improved with that
● Best: X and Y papers did this, Z improved, nobody has yet to do…

https://aclanthology.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://scholar.google.com/?inst=3203679203499159833

6

Example literature review:
removing private health
information (PHI)

● Writing clarity is what I grade on homework and project reports, not
grammar and spelling

○ Computer science writing values clarity and conciseness

● Writing from generative AI is often vague, abstract, wordy, and non-
specific to what you did in your project. It isn’t recommended

● Generative AI can generate claims that aren’t backed up by your project

● ChatGPT and other LLMs don’t know what you specifically did or are
planning on doing in your project or homework. You could tell them, but
at that point just write that down directly in your report!

7

Clarity and using generative AI tools for writing

● If you use generative AI tools for writing, aim for machine-in-the-
loop writing where you as the human bear most of the rhetorical
load (Knowles 2024)

○ AI is more like an assistant than a co-author

● Example of unclear project writing

8

Clarity and using generative AI tools for writing

● Activity: work through self-attention

● Transformer input and output details

● Position embeddings

● Language modeling head

● Intro to LLMs

● Pretraining LLMs

9

Overview: Transformers part 2, intro to LLMs

10

Activity: work through self-attention

Review: Describe self-
attention in transformers

11

● Example sentence: “we wash our cats” (don’t ask)

● Let’s just calculate the vector output, for one input word: “we”

● High-level points to remember before you get buried in the math:

○ Each token will have an output vector that integrates contextual information
from other tokens in the sentence

○ Each token can play a role as a query, key, and value

● Parameters (learned through backpropagation) are assumed given:

○ WQ, WK, WV

12

Calculate transformed output for one input word

13
Slide credit: David Mortensen

14

Dot product: vector ⋅ matrix

15
Slide credit: David Mortensen

[1, 3, 3]

[1, 2, 2]

WQ=

1.5 1 2
3 −2 5
1 2 −2
9 4 2

x1 = [3, 0, 1, -0.5]

WK=

1 0.5 2
−2 0.5 3
0.5 2 −3
5 3 2

x1 = [3, 0, 1, -0.5]

x1 = [3, 0, 1, -0.5]

Find q1 and k1

16
Slide credit: David Mortensen

Assume dk = 64

q1 = [1, 3, 3]

k1 = [1, 2, 2]
k2 = [3, 4, 3]
k3 = [5, 2, 3]
k4 = [3, 2, 1]

v1 = [1, 0.5, -1]
v2 = [4, 5, -2]
v3 = [-3, 2, 2]
v4 = [1, 1, 6]

z1 = [1.27, 3.14, 0.1]

17

●Transformer input and output

Token and Position Embeddings

● The matrix X (of shape [N × d]) has an embedding
for each word in the context.

● This embedding is created by adding two distinct
embedding for each input: token and position
embeddings

● Since self-attention doesn’t build in order
information, we need to encode the order of the
sentence in our keys, queries, and values

Slide adapted from Jurafsky & Martin

Token Embeddings

Embedding matrix E has shape |V | × d
• One row for each of the |V | tokens in the vocabulary.

• Each word is a row vector of d dimensions

Given: string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224]

2. Select the corresponding rows from E, each row an embedding

(row 5, row 4000, row 10532, row 2224).

Slide adapted from Jurafsky & Martin

Position Embeddings

● There are many methods, but we'll just describe the
simplest: absolute position.

● Goal: learn a position embedding matrix Epos of shape 1 × N
● Start with randomly initialized embeddings

• one for each integer up to some maximum length.
• i.e., just as we have an embedding for the word fish, we’ll have an

embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are
learned along with other parameters during training.

Slide adapted from Jurafsky & Martin

Each x is just the sum of word and position embeddings

X = Composite

Embeddings

(word + position)

Transformer Block

J
a
n

e
t

1

w
ill

2

b
a
c
k

3
Janet will back the bill

th
e

4

b
ill

5

+ + + + +

Position

Embeddings

Word

Embeddings

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Unembedding layer: FFN layer projects from hL
N (shape 1 × d) to probability

distribution vector over the vocabulary

Why "unembedding"? Tied to ET

Weight tying, we use the same weights
for two different matrices

Unembedding layer maps from an embedding to a
1x|V| vector of logits

Slide adapted from Jurafsky & Martin

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Logits, the score vector u

One score for each of the |V |
possible words in the
vocabulary V . Shape 1 × |V |.

Softmax turns the logits into
probabilities over
vocabulary. Shape 1 × |V |.

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of

its occurrence with the n− 1 prior words. The context is thus of size n− 1. For

transformer language models, the context is the size of the transformer’s context

window, which can bequite large: 2K, 4K, even 32K tokens for very largemodels.

The job of the language modeling head is to take the output of the final trans-

former layer from the last tokenN and use it to predict the upcoming word at posi-

tionN+ 1. Fig. 9.14 showshow to accomplish this task, taking theoutput of the last

token at the last layer (the d-dimensional output embedding of shape [1⇥d]) and

producing a probability distribution over words (from which we will choose one to

generate).

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding layer

U = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L
N and outputs a

distribution over vocabulary V

Figure9.14 The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hLN) to a probability distribution over words in the

vocabulary V.

The first module in Fig. 9.14 is a linear layer, whose job is to project from the

output hLN, which represents theoutput token embedding at positionN from thefinal

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will havealogit

single score for each of the |V| possible words in thevocabulary V. The logit vector

u is thus of dimensionality 1⇥|V|.
This linear layer can be learned, but more commonly we tie this matrix to (the

transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the

transformer theembedding matrix (of shape [|V|⇥d]) isused to map from aone-hot

vector over the vocabulary (of shape [1⇥|V|]) to an embedding (of shape [1⇥d]).

And then in thelanguagemodel head, ET , thetransposeof theembedding matrix (of

shape [d⇥|V|]) is used to map back from an embedding (shape [1⇥d]) to a vector

over thevocabulary (shape [1⇥|V|]). In the learning process, E will beoptimized to

begood at doing both of thesemappings. Wetherefore sometimes call the transpose

ET theunembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hL
N ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a

given text. But themost important usage to generate text, which wedo by sampling

Slide adapted from Jurafsky & Martin

The final transformer language model

wi

Sample token to

generate at position i+1

feedforward

layer norm

attention

layer norm

U

Input token

Language
Modeling

Head

Input

Encoding E

i+

…

logits

feedforward

layer norm

attention

layer norm

Layer 1

Layer 2

h1
i = x2

i

x1
i

h2
i = x3

i

feedforward

layer norm

attention

layer norm

hL
i

hL-1
i = xL

i

y1 y2 y|V|…Token probabilities

u1 u2 u|V|…

softmax

wi+1

Layer L
Slide adapted from Jurafsky & Martin

26

Intro to large language models (LLMs):
pretraining and finetuning

Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text

• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word

Slide adapted from Jurafsky & Martin

Large language models

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Slide adapted from Jurafsky and Martin

In contemporary NLP:

• All (or almost all) parameters in NLP networks are
initialized via pretraining.

• Pretraining methods hide parts of the input from
the model, and train the model to reconstruct those
parts.

• This has been exceptionally effective at building
strong:

• representations of language
• parameter initializations for strong NLP
models
• probability distributions over language that
we can sample from

29

Pretraining whole models

Slide adapted from John Hewitt

• MIT is located in __________, Massachusetts.

• I put ___ fork down on the table.

• The woman walked across the street, checking for traffic over ___ shoulder.

• I went to the ocean to see the fish, turtles, seals, and _____.

• Overall, the value I got from the two hours watching it was the sum total of the
popcorn and the drink. The movie was ___.

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered
his destiny. Zuko left the ______.

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

30

What can we learn from reconstructing the input?

Slide adapted from John Hewitt

Pretraining can improve NLP applications by serving as parameter
initialization.

31

The pretraining + finetuning paradigm

Slide adapted from John Hewitt

	Slide 1
	Slide 2: Course logistics: project
	Slide 3: Course logistics: project
	Slide 4: Course logistics: Homework 2
	Slide 5: How to do a literature review
	Slide 6: Example literature review: removing private health information (PHI)
	Slide 7: Clarity and using generative AI tools for writing
	Slide 8: Clarity and using generative AI tools for writing
	Slide 9: Overview: Transformers part 2, intro to LLMs
	Slide 10: Activity: work through self-attention
	Slide 11: Review: Describe self-attention in transformers
	Slide 12: Calculate transformed output for one input word
	Slide 13
	Slide 14: Dot product: vector ⋅ matrix
	Slide 15
	Slide 16
	Slide 17: Transformer input and output
	Slide 18: Token and Position Embeddings
	Slide 19: Token Embeddings
	Slide 20: Position Embeddings
	Slide 21: Each x is just the sum of word and position embeddings
	Slide 22: Language modeling head
	Slide 23: Language modeling head
	Slide 24: Language modeling head
	Slide 25: The final transformer language model
	Slide 26: Intro to large language models (LLMs): pretraining and finetuning
	Slide 27: Language models
	Slide 28: Large language models
	Slide 29: Pretraining whole models
	Slide 30: What can we learn from reconstructing the input?
	Slide 31: The pretraining + finetuning paradigm

