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CS 2731
Human Language Technologies



● Next project deliverable: project proposal due Fri Oct 17

○ Include plans for task, data, methods, evaluation

○ Compare multiple approaches, including an LLM-based approach

○ Literature review of at least 3 related papers

■ How have others approached your task or similar tasks? What are other NLP papers that use 
the same dataset or domain as your project?

■ Baselines to compare your approach to

○ Feel free to email or book office hours with Michael to discuss
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Course logistics: project

https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#project-proposal


● Project proposal presentations in-class next Mon Oct 20

○ Add your slides to this shared PowerPoint

○ Ungraded

● LLM access

○ We have $150 total as a class to use on OpenAI LLM credits

○ Access to open-source LLM set up on School of Computing and Information 
servers for API access has been set up!

■ We will only have access to Gemma 3

■ Michael will give a how-to in a future class session
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Course logistics: project

https://pitt-my.sharepoint.com/:p:/g/personal/mmyoder_pitt_edu/EeSVao32w-1Bojt-WrIHUWMBEUhN-heXGHVXeBXUlsWD_w?e=MNfQMQ


● Types of LLMs: encoders, encoder-decoders, decoders

● Sampling for LLM generation

● Harms from LLMs

● Project peer group feedback
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Overview: LLMs, project peer group feedback
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3 types of LLMs:
encoders, encoder-decoders, decoders



Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude,       BERT family, Flan-T5, Whisper
Llama, Mixtral HuBERT

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Slide adapted from Jurafsky and Martin



Decoder-only models

Also called:

• Causal LLMs

• Autoregressive LLMs

• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Encoders

Many varieties!
• Popular: Masked Language Models 

(MLMs)
• BERT family
• Trained by predicting words from 

surrounding words on both sides
• Are usually finetuned (trained on 

supervised data) for classification 
tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Encoder-Decoders

• Trained to map from one sequence 
to another (sequence to sequence)

• Popular for:
• machine translation: map from one 

language to another

• speech recognition: map from 
acoustics to words

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoder LLMs



Decoder-only models can handle many tasks

● Many tasks can be turned into tasks of 
predicting words!

Slide adapted from Jurafsky and Martin



Conditional generation
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Generating 
text 
conditioned 
on previous 
text!



Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string:

The sentiment of the sentence "I like 

Jackie Chan" is:  

2. And see what word it thinks comes next:
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Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechooseCharlesand continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like

Slide adapted from Jurafsky and Martin



Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:
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Figure10.15 Autoregressive text completion with transformer-based large languagemodels.

word “negative” to seewhich ishigher:

P(positive|Thesentiment of thesentence “ I likeJackieChan” is:)

P(negative|Thesentiment of thesentence “ I likeJackieChan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Whowrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharlesand continue and ask

P(w|Q: Whowrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’ t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask
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Slide adapted from Jurafsky and Martin



Summarization

Original

Summary

Slide adapted from Jurafsky and Martin



LLMs for summarization (using  tl;dr)
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● Take a corpus and ask the model to predict the next word!

● Train the model using gradient descent to minimize the error

● Same loss function as other neural models: cross-entropy loss

● Move the weights in the direction that assigns a higher probability to 
the true next word
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Pretraining decoder LLMs

Slide adapted from Jurafsky and Martin
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Decoding: apply a “causal mask” for self-attention

Slide adapted from Tianxing He, John Hewitt

● To do auto-regressive LM, we need to apply 
a “causal” mask to self-attention, forbidding 
it from getting future context.

● At timestep t, we set 𝑎i = 0 for 𝑖 > 𝑡



● 2018’s GPT was a big success in 
pretraining a decoder!

● Transformer decoder with 12 layers, 
117M parameters.

● 768-dimensional hidden states, 
3072-dimensional feed-forward 
hidden layers.

● Trained on BooksCorpus: over 7000 
unique books.
○ Contains long spans of 

contiguous text, for learning 
long-distance dependencies.
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Generative Pretrained Transformer (GPT; Radford et al. 2018)

Slide adapted from John Hewitt, David Mortensen



● They are basically larger and larger 
autoregressive transformer LMs trained 
on larger and larger amounts of data

● They have shown amazing language 
generation capability when you give it a 
prompt (aka. prefix, the beginning of a 
paragraph)

20

GPT-2, GPT-3, GPT-4, GPT-5 from OpenAI

Slide adapted from Tianxing He
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Generation example from the GPT-2 model

A sample from GPT2 (with top-k sampling)
Slide credit: Tianxing He
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Sampling for LLM generation



● This task of choosing a word to generate based on the model’s 
probabilities is called decoding. 

● The most common method for decoding in LLMs: sampling. 

● Sampling from a model’s distribution over words:

○ choose random words according to their probability assigned by the model. 

● After each token we’ll sample words to generate according to their 
probability conditioned on our previous choices, 

○ A transformer language model will give the probability

Decoding and Sampling

Slide adapted from Jurafsky and Martin



Random sampling

Slide adapted from Jurafsky and Martin



Random sampling doesn't work very well

● Even though random sampling mostly generate 
sensible, high-probable words, 

● There are many odd, low- probability words in 
the tail of the distribution 

● Each one is low- probability but added up they 
constitute a large portion of the distribution 

● So they get picked enough to generate weird 
sentences

Slide adapted from Jurafsky and Martin



Factors in word sampling: quality and diversity

Emphasize high-probability words 
+ quality: more accurate, coherent, and factual, 
- diversity: boring, repetitive. 

Emphasize middle-probability words 
+ diversity: more creative, diverse, 
- quality: less factual, incoherent

Slide adapted from Jurafsky and Martin



Top-k sampling:

1. Choose # of words k 
2. For each word in the vocabulary V , use the language 

model to compute the likelihood of this word given the 
context p(wt |w<t ) 

3. Sort the words by likelihood, keep only the top k most 
probable words. 

4. Renormalize the scores of the k words to be a 
legitimate probability distribution. 

5. Randomly sample a word from within these remaining k 
most-probable words according to its probability. 

Slide adapted from Jurafsky and Martin



Temperature sampling

Reshape the distribution instead of truncating it
Intuition from thermodynamics, 

• a system at high temperature is flexible and can 
explore many possible states,

• a system at lower temperature is likely to explore a 
subset of lower energy (better) states.

In low-temperature sampling,  (τ ≤ 1) we smoothly
• increase the probability of the most probable words
• decrease the probability of the rare words. 

Slide adapted from Jurafsky and Martin



Temperature sampling

Divide the output by a temperature parameter τ 
before passing it through the softmax.

Instead of

We do  

A lower τ pushes high-probability words higher and low probability 
word lower due to the way softmax works

Slide adapted from Jurafsky and Martin
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●Pretraining data and harms of LLMs



LLMs are mainly trained on the web

● Common crawl, snapshots of the entire web 
produced by the non-profit Common Crawl with 
billions of pages

● Colossal Clean Crawled Corpus (C4; Raffel et al. 
2020), 156 billion tokens of English, filtered

● What's in it? Mostly patent text documents, 
Wikipedia, and news sites 

Slide adapted from Jurafsky and Martin



The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

dialog

Slide adapted from Jurafsky and Martin



Big idea

● Text contains enormous amounts of 
knowledge

● Pretraining on lots of text with all that 
knowledge is what gives language 
models their ability to do so much

Slide adapted from Jurafsky and Martin



But there are problems with scraping from the web

● Copyright: much of the text in these datasets is 
copyrighted
• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question

● Data consent
• Website owners can indicate they don't want their site 

crawled

● Privacy: 
• Websites can contain private IP addresses and phone 

numbers

Slide adapted from Jurafsky and Martin



Hallucination

35

Harms from LLMs

Slide adapted from Jurafsky and Martin

Copyright

Privacy



Toxicity and abuse

36

Harms from LLMs

Slide adapted from Jurafsky and Martin

Misinformation



● Transformer-based language models pretrained on lots of text are called 
large language models (LLMs)

● LLMs can have decoder-only, encoder-only, or encoder-decoder 
architectures

● Decoder-only LLMs can cast many different NLP tasks as word prediction

● There are many different sampling approaches that balance diversity 
and quality in text generation from LLMs

● Harms from LLMs include hallucinating false information, leaking private 
information from training data, generating abuse and misinformation

37

Conclusion



Project peer group feedback

38



1. Find another group to work with

2. Present an overview of your project: 5 min

3. Other group asks clarifying questions

4. Presenting group asks for any advice or guidance from the other 
group on lingering questions about the project proposal

5. Switch groups when Michael says

39

Project peer group feedback
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