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GOALS

TODAY’S CLASS

1. Define Sequential Decision Making Problems

2. Imitation Learning (copying an expert)

3. Reinforcement Learning

4. Policy Gradient Methods
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EXAMPLES

DECISION MAKING PROBLEMS
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Robot navigation

Alajlan, M. (2014). Global Path Planning for Single and Multi-Robot Systems.
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Robot navigation

Robot locomotion

https://www.youtube.com/watch?v=9j2a1oAHDL8
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Robot navigation

Robot locomotion

Recommendation (Ads, YouTube, etc)
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EXAMPLES
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Robot navigation

Robot locomotion

Recommendation (Ads, YouTube, etc)

Game Playing

https://www.youtube.com/watch?v=TmPfTpjtdgg
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EXAMPLES

DECISION MAKING PROBLEMS
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Robot navigation

Robot locomotion

Recommendation (Ads, YouTube, etc)

Game Playing

Data Center Cooling

Lazic, N., Boutilier, C., Lu, T., Wong, E., Roy, B., Ryu, M., & Imwalle, G.P. (2018). Data center cooling using model-predictive control. Neural Information Processing Systems.
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EXAMPLES
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Robot navigation

Robot locomotion

Recommendation (Ads, YouTube, etc)

Game Playing

Data Center Cooling

Chatbots/LLMs

https://chatgpt.com/
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t t + 1

Action

Obsertvation
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PROBLEM FORMULATION (IMITATION LEARNING)

SEQUENTIAL DECISION MAKING
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Can we frame this problem as a function approximation problem? 

 — observation at time 

 — action (agent’s decision) at time 

 — expert’s probability distribution over actions given 

 — agent’s probability distribution over actions given 

Xt t

At t

f*(Xt) Xt

f(Xt) Xt

arg min
f

E [
∞

∑
t=1

d (f(Xt), f*(Xt))]
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PROBLEM FORMULATION (IMITATION LEARNING)

SEQUENTIAL DECISION MAKING
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Collect data from an expert: 

Classification (or regression) to fit  to 

D = {x1, x2, ⋯, xm}, {a1, a2, ⋯, am}

f D

lD(θ) = −
m

∑
i=1

ln Pr(At = ai |Xt = xi) = −
m

∑
i=1

ln f(xi, θ)ai
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PROBLEM FORMULATION (IMITATION LEARNING)

IMITATION LEARNING

16https://www.youtube.com/watch?v=anOI0xZ3kGM

https://www.youtube.com/watch?v=anOI0xZ3kGM
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• Approximation has errors that does not match the expert

• Errors lead to new observations, not in the data set
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PROPERTIES

IMITATION LEARNING
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• Approximation has errors that does not match the expert

• Errors lead to new observations, not in the data set

• Assume perfect approximation on 

• The environment may have noise (cannot exactly replicate the same sequences in )

• Tiny changes in observation may lead to new states

D

D
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PROPERTIES

IMITATION LEARNING
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• Imitation needs:

• Lots of expert data

• Collect expert decisions from observation that an expert won’t see, but the agent might
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PROPERTIES

IMITATION LEARNING
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• Imitation needs:

• Lots of expert data

• Collect expert decisions from observation that an expert won’t see, but the agent might

An agent can only be as good as an expert!

It is not always possible to have a good enough expert!
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DESIRED PROPERTIES FOR DECISION-MAKING AGENT

REINFORCEMENT LEARNING
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The agent should learn from its interactions with the environment

— collect its own data (not always necessary)

The agent needs to determine what is the best action

— Agent has to search for the best action (we cannot tell it what to do)

The agent needs to know how good its decision was. 

— Provide a score (reward) indicating the quality of decisions
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AGENT-ENVIRONMENT INTERACTION

REINFORCEMENT LEARNING
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Environment

Agent

Xt Rt

Xt+1

Rt+1

At
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t t + 1

+1

reward for the previous actionAction

Obsertvation

+0 +2 −1
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t t + 1

+1

reward for the previous actionAction

Obsertvation

+0 +2 −1

Maximize sum of all rewards
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OBJECTIVE

REINFORCEMENT LEARNING
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Finite Episodic Problem:

The agent interacts with the environment for  time steps

The initial configuration of the environment is sampled from some distribution 

Agent receives a reward  for taking action  in 

After  time steps, the environment resets to an initial configuration

We call one sequence of time steps  to  an episode

T

d0

d0(x) = Pr(X1 = x)

Rt+1 At Xt

T

t = 1 t = T
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Agent samples actions from , i.e., 

The objective function (expectation of the sum of all rewards):

f(Xt, θ) At ∼ f(Xt, θ)

ρ(θ) ·= E [
T

∑
t=1

Rt+1]
Randomness comes from 

initial state  and 
randomness in actions 

X1
At
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OBJECTIVE

REINFORCEMENT LEARNING
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Agent samples actions from , i.e.,  — call  a policy

The objective function (expectation of the sum of all rewards):

The agent’s goal is to find parameters  that maximize 

f(Xt, θ) At ∼ f(Xt, θ) f

ρ(θ) ·= E [
T

∑
t=1

Rt+1]
θ ρ

arg max
θ

ρ(θ)

Randomness comes from 
initial state  and 

randomness in actions 
X1

At
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EXAMPLES

RL PROBLEMS
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Maximize score

 image of the game

 = controller movement

 = points for breaking bricks

Xt =

At

Rt+1
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EXAMPLES

RL PROBLEMS
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Get out the maze as fast 
as possible

 Position in the maze

 = direction to move

Agent penalized for being in the maze every time step

 

Xt =

At

Rt+1 = − 1
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EXAMPLES

RL PROBLEMS
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Human prefered output

 token sequence/context up to point t

 = next token

 — 0 until the end of the episode

 — score representing the quality of generated sequence

Make LLM output human prefer text

Many reward/scoring functions people use 

Xt =

At

Rt+1 = ?

RT+1

LLM
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SOME DIFFERENCES

RL VS SUPERVISED LEARNING

31

Supervised Learning:

Instructive feedback — predict this label

Assumes training data comes from the same distribution that the model will be used in

Reinforcement learning:

Evaluative feedback — how good was the decision (not what was the best decision)

— This makes RL have to search for good decisions through trial and error

Data distribution changes — improving the decisions will change the observations
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OPTIMIZATION

REINFORCEMENT LEARNING

33

Gradient ascent:

ρ(θ) ·= E [
T

∑
t=1

Rt+1]
θ ← θ + η∇ρ(θ)
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EXPRESSION

POLICY GRADIENT
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∇ρ(θ) =
∂
∂θ

E [
T

∑
t=1

Rt+1]
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ρ(θ) = E [
T

∑
t=1

Rt+1]
Gt =

T−t

∑
k=0

Rt+k+1

H1:T = {X1, A1, X2, R2, A2, ⋯, XT, AT, RT+1}

τ1:T = {x1, a1, x2, r2, ⋯, xT, aT, rT+1}
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EXPRESSION

POLICY GRADIENT
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ρ(θ) = E [
T

∑
t=1

Rt+1] = E [G1] = ∑
τ

Pr(H1:T = τ1:T)G1

Gt =
T−t

∑
k=0

Rt+k+1

H1:T = {X1, A1, X2, R2, A2, ⋯, XT, AT, RT+1}

τ1:T = {x1, a1, x2, r2, ⋯, xT, aT, rT+1}



Emma Jordan 10/25/25

EXPRESSION
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∇ρ(θ) =
∂
∂θ

E [
T

∑
t=1

Rt+1] =
∂
∂θ

E [G1] =
∂
∂θ ∑

τ

Pr (H1:T = τ) G1
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EXPRESSION
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∇ρ(θ) =
∂
∂θ

E [
T

∑
t=1

Rt+1] =
∂
∂θ

E [G1] =
∂
∂θ ∑

τ

Pr (H1:T = τ) G1

= ∑
τ

∂ Pr (H1:T = τ) G1

∂θ
= ∑

τ (
∂ Pr (H1:T = τ)

∂θ
G1 +

∂G1

∂θ
Pr (H1:T = τ))

= ∑
τ

∂ Pr (H1:T = τ)
∂θ

G1
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∇ρ(θ) =
∂
∂θ

E [
T

∑
t=1

Rt+1] =
∂
∂θ

E [G1] =
∂
∂θ ∑

τ

Pr (H1:T = τ) G1

= ∑
τ

∂ Pr (H1:T = τ) G1

∂θ
= ∑

τ (
∂ Pr (H1:T = τ)

∂θ
G1 +

∂G1

∂θ
Pr (H1:T = τ))

= ∑
τ

∂ Pr (H1:T = τ)
∂θ

G1

= ∑
τ

Pr (H1:T = τ) G1
∂ ln Pr (H1:T = τ)

∂θ

d
dx

p(x) = p(x)
d
dx

ln p(x)
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EXPRESSION

POLICY GRADIENT
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∇ρ(θ) =
∂
∂θ

E [
T

∑
t=1

Rt+1] =
∂
∂θ

E [G1] =
∂
∂θ ∑

τ

Pr (H1:T = τ) G1

= ∑
τ

∂ Pr (H1:T = τ) G1

∂θ
= ∑

τ (
∂ Pr (H1:T = τ)

∂θ
G1 +

∂G1

∂θ
Pr (H1:T = τ))

= ∑
τ

∂ Pr (H1:T = τ)
∂θ

G1

= ∑
τ

Pr (H1:T = τ) G1
∂ ln Pr (H1:T = τ)

∂θ

= E [G1
∂ ln Pr (H1:T = τ)

∂θ ]

d
dx

p(x) = p(x)
d
dx

ln p(x)
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EXPRESSION

POLICY GRADIENT
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 — How good was the episode 

 — direction to change  to make the episode  more likely

 — makes episodes more likely proportionally to how good they are

∇ρ(θ) = E [G1
∂ ln Pr (H1:T)

∂θ ]
G1 H1:T

∂ ln Pr(H1:T)
∂θ

θ H1:T

∇ρ(θ)
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EXPRESSION

POLICY GRADIENT
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 — How good was the episode 

 — direction to change  to make the episode  more likely

 — makes episodes more likely proportionally to how good they are

 — make episodes that are better than average more likely

∇ρ(θ) = E [G1
∂ ln Pr (H1:T)

∂θ ]
G1 H1:T

∂ ln Pr(H1:T)
∂θ

θ H1:T

∇ρ(θ)

∇ρ(θ) = E [(G1 − ρ(θ))
∂ ln Pr (H1:T)

∂θ ]
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MAKE EPISODE MORE LIKELY

POLICY DERIVATIVE

44

 controls action distribution 

Different actions control the rewards and the subsequent observations 

∂ ln Pr (H1:T = τ)
∂θ

f(Xt, θ)

Xt+1

p(x, a, x′￼, r) ·= Pr(Xt+1 = x′￼, Rt+1 = r |Xt = x, At = a)
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MAKE EPISODE MORE LIKELY
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 controls action distribution 

Different actions control the rewards and the subsequent observations 

Assume 

∂ ln Pr (H1:T = τ)
∂θ

f(Xt, θ)

Xt+1

p(x, a, x′￼, r) ·= Pr(Xt+1 = x′￼, Rt+1 = r |Xt = x, At = a)

Pr(Xt+1 = x′￼, Rt+1 = r |H1:t = τ1:t) = Pr(Xt+1 = x′￼, Rt+1 = r |Xt = xt, At = at)
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EPISODE PROBABILITIES
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Pr(H1:T = τ1:T) = d0(x1)f(x1, θ)a1
p(x1, a1, x2, r2)f(x2, θ)a2

p(x2, a2, x3, r3)⋯p(xT, aT, xT+1, rT+1)

= d0(x1)
T

∏
t=1

f(xt, θ)at
p(xt, at, xt+1, rt+1)
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Pr(X1 = x1) = d0(x1)
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1)
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EPISODE PROBABILITIES
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1) = f(x1, θ)a1
d0(x1)
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EPISODE PROBABILITIES
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1) = f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2) = Pr(X2 = x2, R2 = r2 |X1 = x1, A1 = a1) Pr(X1 = x1, A1 = a1)



Emma Jordan 10/25/25

EPISODE PROBABILITIES
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1) = f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2) = Pr(X2 = x2, R2 = r2 |X1 = x1, A1 = a1) Pr(X1 = x1, A1 = a1)

= p(x1, a1, x2, r2)f(x1, θ)a1
d0(x1)
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EPISODE PROBABILITIES
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1) = f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2) = Pr(X2 = x2, R2 = r2 |X1 = x1, A1 = a1) Pr(X1 = x1, A1 = a1)

= p(x1, a1, x2, r2)f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2, A2 = a2) = Pr(A2 = a2 |X2 = x2) Pr(X2 = x2, R2 = r2, X1 = x1, A1 = a1)
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Pr(X1 = x1) = d0(x1)

Pr(X1 = x1, A1 = a1) = Pr(A1 = a1 |X1 = x1) Pr(X1 = x1) = f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2) = Pr(X2 = x2, R2 = r2 |X1 = x1, A1 = a1) Pr(X1 = x1, A1 = a1)

= p(x1, a1, x2, r2)f(x1, θ)a1
d0(x1)

Pr(X1 = x1, A1 = a1, X2 = x2, R2 = r2, A2 = a2) = Pr(A2 = a2 |X2 = x2) Pr(X2 = x2, R2 = r2, X1 = x1, A1 = a1)

= f(x2, θ)a2
p(x1, a1, x2, r2)f(x1, θ)a1

d0(x1)



Emma Jordan 10/25/25

EPISODE PROBABILITIES
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Pr(H1:T = τ1:T) = d0(x1)f(x1, θ)a1
p(x1, a1, x2, r2)f(x2, θ)a2

p(x2, a2, x3, r3)⋯p(xT, aT, xT+1, rT+1)

= d0(x1)
T

∏
t=1

f(xt, θ)at
p(xt, at, xt+1, rt+1)
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MAKE EPISODE MORE LIKELY

EPISODE DERIVATIVE
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∂
∂θ

ln Pr(H1:T = τ1:T) =
∂
∂θ

ln (d0(x1)
T

∏
t=1

f(xt, θ)at
p(xt, at, xt+1, rt+1))

=
∂
∂θ [ln d0(x1) +

T

∑
t=1

ln f(xt, θ)at
+ ln p(xt, at, xt+1, rt+1)]

=
∂
∂θ

ln d0(x1) +
T

∑
t=1

∂
∂θ

ln f(xt, θ)at
+

∂
∂θ

ln p(xt, at, xt+1, rt+1)

=
T

∑
t=1

∂
∂θ

ln f(xt, θ)at
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MAKE EPISODE MORE LIKELY

EPISODE DERIVATIVE
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∂
∂θ

ln Pr(H1:T = τ1:T) =
∂
∂θ

ln (d0(x1)
T

∏
t=1

f(xt, θ)at
p(xt, at, xt+1, rt+1))

=
∂
∂θ [ln d0(x1) +

T

∑
t=1

ln f(xt, θ)at
+ ln p(xt, at, xt+1, rt+1)]

=
∂
∂θ

ln d0(x1) +
T

∑
t=1

∂
∂θ

ln f(xt, θ)at
+

∂
∂θ

ln p(xt, at, xt+1, rt+1)

=
T

∑
t=1

∂
∂θ

ln f(xt, θ)at Do not need to know  to take the derivative!p
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EXPRESSION

POLICY GRADIENT
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∇ρ(θ) = E [(G1 − ρ(θ))
∂ ln Pr (H1:T)

∂θ ]
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EXPRESSION

POLICY GRADIENT
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∇ρ(θ) = E [(G1 − ρ(θ))
T

∑
t=1

∂ ln f(Xt)At

∂θ ]

The agent doesn’t need to model the world 
to improve its decision. 
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SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

REINFORCE

59

Idea: sample an episode  using actions from  and compute the sample estimate of the gradient. τ f(Xt, θ)
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SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

REINFORCE

60

Sample_gradient(states, actions, rewards, , )

return 

θ ̂ρ

G1 ← sum(rewards)

(G1 − ̂ρ)
T

∑
t=1

∂ ln f(Xt, θ)At

∂θ

Collect_episode( ):

states = [], actions = [], rewards = []

for 

states.append( ), actions.append( )

rewards.append( )

return states, actions, rewards

θ

X1 ∼ d0

t ∈ {1,…, T}

At ∼ f(Xt, θ)

Xt At

Xt+1, Rt+1 ∼ environment(Xt, At)

Rt+1
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SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

REINFORCE

61

REINFORCE( max_iters)

for itr in 1:max_iters

states, actions, rewards = collect_episode( )

sample_gradient(states, actions, rewards, )

θ, η, β,

̂ρ ← 0

θ

̂∇ ← θ, ̂ρ

θ ← θ + η ̂∇

̂ρ ← β ̂ρ + (1 − β)G1
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PROPERTIES

REINFORCE

62

High variance gradient estimates:

• Observe one sampled episode

• The cumulative reward is high-variance

•  has no impact on 

G1

Rt′￼<t At

Solutions:

• Sample multiple episodes

• Use  for each 

• Predict  give 

Gt
∂ ln f(Xt, θ)At

∂θ
Gt Xt
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A MORE COMMON GRADIENT ESTIMATE

GRADIENT ESTIMATE

63

Sample_gradient(states, actions, rewards, , )

return 

θ v

G1, G2, …, GT ← cumulative_rewards(rewards)

̂∇ ←
T

∑
t=1

(Gt − v(Xt))
∂ ln f(Xt, θ)At

∂θ

̂∇



Emma Jordan 10/25/25

SOME GOOD THINGS TO KNOW

POLICY GRADIENT METHODS

64

They mix exploration (trying new actions) with exploitation (trying actions that worked well)

If a large step is taken (usually with large ) the following can happen:

The agent oversteps and the policy can diverge (same as in supervised learning)

The agent overcommits to sub-optimal actions, i.e., 

it won’t try any new actions anymore

and cannot keep improving.

Policy gradient methods often get stuck in flat gradient spaces and stop trying new actions.  

η
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GENERAL SET UP

RL FOR TRAINING LANGUAGE MODELS

65

Supervised pretraining

Minimize negative log-likelihood on next token prediction over a large data set

Goal: have the model generate text that is preferable to the user.

Problem: next token prediction does not mean generating useful responses

Solution: Sample text outputs and score the outputs. Make the outputs that score better more likely!

This is the policy gradient process!
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MORE SPECIFIC

RL FOR TRAINING LANGUAGE MODELS

66

 initial context

  generated output

  score for the entire text

 

X1:k

X̂k+1:t ∼ f(X1:k, θ)

G = r(X̂1:t)

ρ(θ) = E[G]
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SCORING TEXT
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What is deep learning?
Deep learning is a mathematical framework for constructing a 
layered composition of functions that can be trained via gradient 
descent. 
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SCORING TEXT
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What is deep learning?
Deep learning is a subset of machine learning that focuses on using artificial neural networks to model and solve complex problems. It is inspired by the structure and 
function of the human brain, particularly how neurons connect and communicate with one another.
Key Features of Deep Learning:
1.Neural Networks: Deep learning uses multi-layered neural networks, often called deep neural networks, where each layer extracts increasingly abstract features 
from the data.

2.Large Data Requirements: Deep learning algorithms typically require large datasets to achieve high accuracy, as they need extensive examples to generalize well.
3.Representation Learning: It automatically discovers the representations needed for feature detection or classification from raw data, reducing the need for manual 
feature extraction.

4.Complex Problem Solving: It excels at tasks involving complex data like images, audio, text, and video.
Common Architectures in Deep Learning:
1.Convolutional Neural Networks (CNNs): Used primarily for image and video recognition.
2.Recurrent Neural Networks (RNNs): Effective for sequential data like time series and natural language.
3.Transformers: Revolutionized natural language processing (NLP) with models like GPT and BERT.
4.Autoencoders: Used for unsupervised learning, such as anomaly detection or data compression.
5.Generative Adversarial Networks (GANs): Generate new data similar to the training data, such as synthetic images

…
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What score should we assign to each one?

What is deep learning?
Deep learning is a subset of machine learning that focuses on using 
artificial neural networks to model and solve complex problems. It 
is inspired by the structure and function of the human brain, 
particularly how neurons connect and communicate with one 
another.
Key Features of Deep Learning:
1.Neural Networks: Deep learning uses multi-layered neural 
networks, often called deep neural networks, where each layer 
extracts increasingly abstract features from the data.

2.Large Data Requirements: Deep learning algorithms typically 
require large datasets to achieve high accuracy, as they need 
extensive examples to generalize well.

What is deep learning?
Deep learning is a mathematical framework for 
constructing a layered composition of functions 
that can be trained via gradient descent.
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What is deep learning?
Deep learning is a subset of machine learning that focuses on using 
artificial neural networks to model and solve complex problems. It 
is inspired by the structure and function of the human brain, 
particularly how neurons connect and communicate with one 
another.
Key Features of Deep Learning:
1.Neural Networks: Deep learning uses multi-layered neural 
networks, often called deep neural networks, where each layer 
extracts increasingly abstract features from the data.

2.Large Data Requirements: Deep learning algorithms typically 
require large datasets to achieve high accuracy, as they need 
extensive examples to generalize well.

What is deep learning?
Deep learning is a mathematical framework for 
constructing a layered composition of functions 
that can be trained via gradient descent.

What score should we assign to each one?

Extremely difficult to construct a scoring system!

Rewarding intuitive things (e.g., length) can produce 
undesired consequences (e.g., generating super-long 
answers).

Humans have preferences, e.g.,

Rank one output as better than another
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human’s preferences between two samples  and 

Let  be the human prefered generation

r(θr, X1:k, X̂k+1:t) ≈ X̂k+1:t X̂′￼k+1:t

X′￼k+1:t

l(θr) = E [ln (σ (r(θr, X1:k, X′￼k+1:t) − r(θr, X1:k, Xk+1:t)))]
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Xk+1:t ∼ f(X1:k, θ)

ρ(θ) = E [r(θr, X1:k, Xk+1:t)]
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 will overfit to learned preferences 

Xk+1:t ∼ f(X1:k, θ)

ρ(θ) = E [r(θr, X1:k, Xk+1:t)]

arg max
θ

ρ(θ) r(θr, …)

RLHF
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Idea: keep generated outputs close to that from the supervised learning model. 

 — weights learned from supervised learningθSL

ρ(θ) = E [r(θr, X1:k, Xk+1:t) + β ln
f(X1:k, θ)Xk+1:t

f(X1:k, θSL)Xk+1:t
]

RLHF
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Iterative process:

1. Sample model outputs

2. Collect human rankings of outputs

3. Model the ranking (learning )

4. Optimize the model ( )

5. Repeat

r

arg max
θ

ρ(θ)

RLHF
SUMMARY
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Still an active area of research!

Many problems:

Estimating  is very difficult

Optimizing  of leads to overfitting and not producing diverse text

Collecting human feedback

r

θ

RLHF
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Still an active area of research!

Many problems:

Estimating  is very difficult

Optimizing  of leads to overfitting and not producing diverse text

Collecting human feedback

Human feedback data is collected from poorer parts of the world where workers are in harsh conditions! 

Human feedback does not mean the model is correct. Humans are wrong all the time and contain their own 
biases. 

r

θ

RLHF



Emma Jordan 10/25/25

NEXT CLASS

Reinforcement Learning from Human Feedback
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