REINFORCEMENT LEARNING



TODAY’S CLASS

GOALS

1. Define Sequential Decision Making Problems
2. Imitation Learning (copying an expert)
3. Reinforcement Learning

4. Policy Gradient Methods
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation

s TN D BN NN DEN BEN DI NN DN BN BN AN B O .

Em ma Jordan Alajlan, M. (2014). Global Path Planning for Single and Multi-Robot Systems.
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation

Robot locomotion

_—-_-_------h‘

Emma Jordan https://www.youtube.com/watch?v=9j2a10AHDLS8
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation
Robot locomotion

Recommendation (Ads, YouTube, etc)

_—-_-_------h‘
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation

Robot locomotion

s TN D BN NN DEN BEN DI NN DN BN BN AN B O .

Recommendation (Ads, YouTube, etc)

Game Playing

E mma J (o) rd an https://www.youtube .com/watch?v=TmPf{Tpjtdgg
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation
Robot locomotion
Recommendation (Ads, YouTube, etc) :

Game Playing

Data Center Cooling
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Em ma J Ordan Lazic, N., Boutilier, C., Lu, T., Wong, E., Roy, B., Ryu, M., & Imwalle, G.P. (2018). Data center cooling using model-predictive control. Neural Information Processing Systems. 1 0/ 25/ 25 7
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DECISION MAKING PROBLEMS

EXAMPLES

Robot navigation |
Robot locomotion i
Recommendation (Ads, YouTube, etc) ,

»

Game Playing What can | help with? Dl \ -
Data Center Cooling Messeqe Chatcet . ] s
)
| N - cold air (LAT)
Chatbots/LLMs T e e l
| = 7 cold water l

(EWT)
CAT, DP,
Sensors

Emma Jordan https://chatgpt.com/ 10/25/25 8




SEQUENTIAL DECISION MAKING
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SEQUENTIAL DECISION MAKING

‘ Action ‘
I
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SEQUENTIAL DECISION MAKING

‘ Action ‘
I
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SEQUENTIAL DECISION MAKING

PROBLEM FORMULATION (IMITATION LEARNING)

Can we frame this problem as a function approximation problem?

X, — observation at time ¢
A, — action (agent’s decision) at time ¢
f+(X,) — expert’s probability distribution over actions given X,

f(X) — agent’s probability distribution over actions given X,
argminE | ) d (fX). (X))
=1
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SEQUENTIAL DECISION MAKING

PROBLEM FORMULATION (IMITATION LEARNING)

Collect data from an expert:

D = {x;,%),,x, },1a;,ay, =+, a,}

Classification (or regression) to fit f to D

[0 =— ) InPr(A, = q,|X,=x) = — ) Inf(x,0),
=1 =1
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Emma Jordan https://www.youtube.com/watch?v=anOI0xZ3kGM 10/25/25 16


https://www.youtube.com/watch?v=anOI0xZ3kGM

IMITATION LEARNING

PROPERTIES

® Approximation has errors that does not match the expert

® Errors lead to new observations, not in the data set

Emma Jordan 10/25/25 17



IMITATION LEARNING

PROPERTIES

® Approximation has errors that does not match the expert
® Errors lead to new observations, not in the data set

® Assume perfect approximation on D
® The environment may have noise (cannot exactly replicate the same sequences in D)

® Tiny changes in observation may lead to new states

Emma Jordan 10/25/25 18



IMITATION LEARNING

PROPERTIES

® Imitation needs:
® Lots of expert data

® Collect expert decisions from observation that an expert won’t see, but the agent might
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IMITATION LEARNING

PROPERTIES

® Imitation needs:
® Lots of expert data

® Collect expert decisions from observation that an expert won’t see, but the agent might

An agent can only be as good as an expert!

It is not always possible to have a good enough expert!

Emma Jordan 10/25/25 20



REINFORCEMENT LEARNING

DESIRED PROPERTIES FOR DECISION-MAKING AGENT

The agent should learn from its interactions with the environment

— collect its own data (not always necessary)
The agent needs to determine what is the best action

— Agent has to search for the best action (we cannot tell it what to do)
The agent needs to know how good its decision was.

— Provide a score (reward) indicating the quality of decisions

Emma Jordan 10/25/25 21



REINFORCEMENT LEARNING

AGENT-ENVIRONMENT INTERACTION

~ B
Agent
- Y
At
Rt :
. Environment

: V),
: Xt+1
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SEQUENTIAL DECISION MAKING

‘ Action ‘ ‘ reward for the |Iorevious action ‘
I

+0 +2 —1
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SEQUENTIAL DECISION MAKING

‘ Action ‘ ‘ reward for the previous action ‘ ‘ Maximize sum of all rewards ‘
I I I
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REINFORCEMENT LEARNING

OBJECTIVE

Finite Episodic Problem:

The agent interacts with the environment for 1 time steps

The initial configuration of the environment is sampled from some distribution d|,
dy(x) = Pr(X, = x)

Agent receives a reward R, | for taking action A, in X,

After 1 time steps, the environment resets to an initial configuration

We call one sequence of time steps f = 1 to ¢t = T an episode

Emma Jordan 10/25/25 25



REINFORCEMENT LEARNING

OBJECTIVE

Agent samples actions from f(X,, 0), i.e., A, ~ f(X,, 0)

The objective function (expectation of the sum of all rewards):

~ ™
Randomness comes from

I
p() =E | ) R, nitial state X, and
=1

_ randomness in actions A,
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REINFORCEMENT LEARNING

OBJECTIVE

Agent samples actions from f(X, 0), i.e., A, ~ f(X,, @) — call f a policy

The objective function (expectation of the sum of all rewards):

~ ™
Randomness comes from

T
p(0) = E Z R, initial state X; and
=1 _ randomness in actions A,

The agent’s goal is to find parameters € that maximize p

arg max p(6)
%

Emma Jordan 10/25/25 27



RL PROBLEMS

EXAMPLES

X, = image of the game
A, = controller movement

R, | = points for breaking bricks

Maximize score

Emma Jordan 10/25/25 28



RL PROBLEMS

EXAMPLES

X, = Position in the maze

\ A, = direction to move

R = — 1

Agent penalized for being in the maze every time step

Get out the maze as fast

as possible
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RL PROBLEMS

EXAMPLES

X, = token sequence/context up to point t

A, = next token

R,.{ = ? — 0 until the end of the episode

R, — score representing the quality of generated sequence

Make LLM output human prefer text

Human prefered output

Many reward/scoring functions people use

Emma Jordan 10/25/25 30



RL VS SUPERVISED LEARNING

SOME DIFFERENCES

Supervised Learning:
Instructive feedback — predict this label
Assumes training data comes from the same distribution that the model will be used in
Reinforcement learning:
Evaluative feedback — how good was the decision (not what was the best decision)
— This makes RL have to search for good decisions through trial and error

Data distribution changes — improving the decisions will change the observations

Emma Jordan 10/25/25 31



Emma Jordan 10/25/25 32



REINFORCEMENT LEARNING

OPTIMIZATION

I

p(0) = E [Z Rr+1]

=1

0 — 0+nVp0)
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POLICY GRADIENT

EXPRESSION

mmmmmmmmmm



POLICY GRADIENT

EXPRESSION

T—t
G, = 2 R\ g1

k=0
Hy. = {X1»A1»X2» Ry, Ay, -+, X1, A, RT+1}

Ti.r = X1, 41, X0, 1y, =+, X, A, ”T+1}
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POLICY GRADIENT

EXPRESSION

I

p0) =K lz Rr+1] =E [G1] = Z Pr(Hy.r = 71.7)G,

=1

T—t
G, = 2 R\ g1

k=0
Hy. = {X1»A1»X2» Ry, Ay, -+, X1, A, RT+1}

Ti.r = X1, 41, X0, 1y, =+, X, A, ”T+1}
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POLICY GRADIENT

EXPRESSION

0 _ 0 0
Vp(6) = EE lsz] a_eE G| = EY) Z Pr(H.r = 1) G,
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POLICY GRADIENT

EXPRESSION

0 . | - 0 0
Vp(6) = EY lsz] = a_eE G| = Y ; Pr (H,.r =17) G

0 Pr (HI:T = T) 0G,

— Z :&6’ = Z( v: G, + v Pr (HLT:T))
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POLICY GRADIENT

EXPRESSION
< 0
Vpl) = —JE [;Rm] =g G| = EE Pr(Hy.z=1)G,
) Z 00 _2( s Ot PrlHhr =1

d d
Pl 70 =P )
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POLICY GRADIENT

EXPRESSION

o | & | o J
Vp(0) = %E ; Ry | = %E [Gl] ~ ; Pr (leT = T) G
0 Pr (HI:T = T) G, 0 Pr (HI:T = T) 0G
— ; : :;( EY: G1+a—(91PI’(H1:T=T)>
0Pr (H,.r =
_ Z I‘( 1:T T) G,
- 00
01n Pr (leT = T) i & i
— ;Pr (H.;=1)G, — . px) = p(x) n In p(x)

0ln Pr <H1:T = T)
00

E |G,
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POLICY GRADIENT

EXPRESSION

0ln Pr (HI:T>
00

Vp(0) = E |G,

(G, — How good was the episode H .
01ln Pr(H,.7)
00

V p(0) — makes episodes more likely proportionally to how good they are

direction to change @ to make the episode H,.;- more likely

Emma Jordan 10/25/25 41



POLICY GRADIENT

EXPRESSION
o0lnPr (H,.;)
p(0) [ 1 E ]
G, — How good was the episode H,.;
0ln Pr(H,.7)
pY: ' direction to change 6 to make the episode H;.;- more likely

V p(60) — makes episodes more likely proportionally to how good they are

dln Pr (HI:T>
00

Vp(0) = E [(G| — p(0))

] — make episodes that are better than average more likely

Emma Jordan 10/25/25 42
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POLICY DERIVATIVE

MAKE EPISODE MORE LIKELY

dln Pr (HI:T = T)
00

(X, 6) controls action distribution
Different actions control the rewards and the subsequent observations X, ;

px,a,x,r) =Pr(X ,=x R, =r1|X,=x,A = a)
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POLICY DERIVATIVE

MAKE EPISODE MORE LIKELY

dln Pr (HI:T = T)
00

(X, 6) controls action distribution

Different actions control the rewards and the subsequent observations X, ;
px,a,x,r) =Pr(X ,=x R, =r1|X,=x,A = a)

Assume

Pr(X,p, =x" R =r|H,=71,)=PiX, =X, Ry, =1[X,=x,A, = a)

Emma Jordan 10/25/25 45



EPISODE PROBABILITIES

Pr(Hle — Tl;T) — d()(xl)f(x19 9)a1p(x19 ala xza rz)f(.Xz, Q)azp(x29 az, x39 r3)."p(xT9 aT? xT_|_19 rT-|—1)

T
= dy(x}) Hf (X, H)atp (Xps Qs Xy 15 Ty 1)
=1
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EPISODE PROBABILITIES

Pr(X; = x)) = dy(x))
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EPISODE PROBABILITIES

Pr(Xl — xl) — do(xl)

mmmmmmmmmm



EPISODE PROBABILITIES

Pr(Xl — xl) — do(xl)
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EPISODE PROBABILITIES

Pr(Xl — xl) — do(xl)

PI‘(Xl — Xl,Al — Cll,Xz — x2, Rz — 1”2) — PI‘(X2 — XZ, Rz — ]/'2 ‘Xl — xl,Al — al) PI‘(XI — xl,Al — al)
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EPISODE PROBABILITIES

Pr(Xl — xl) — do(xl)
PI‘(Xl — Xl,Al — Cll,Xz — x2, Rz — 1”2) — PI‘(X2 — XZ, Rz — ]/'2 ‘Xl — xl,Al — al) PI‘(XI — xl,Al — al)

— p(xl, i, Xy, rz)f(X1, H)aldo(xl)

mmmmmmmmmm



EPISODE PROBABILITIES

Pr(X, = x)) = dy(x)

Pr(X, =x,A; = a)) = Pr(A| = a, | X| = x)) Pr(X; = x)) = f(x,0), dy(x))

Pr(X, =x,A, =a,X, =x%,Ry=1,) =Pr(X; =x, R, =1 | X; =x,A; = a) Pr(X; =x,A, = a;)
= p(Xy, Ay, Xp, 1)f (X1, 0), dp(x))
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EPISODE PROBABILITIES

Pr(X, = x)) = dy(x)

Pr(X, =x,A; = a)) = Pr(A| = a, | X| = x)) Pr(X; = x)) = f(x,0), dy(x))

Pr(X; =x,A, =a,X, =x,R,=1r,)) =Pr(X, =x,,R, =1, | X, =x;,A; = a) Pr(X, =x;,A, = a,)
= p(Xxy, ay, Xy, 1) (X4, H)aldo(xﬁ

Pr(X, = x;,A; = a,, X, = X, R, = 1, Ay = a,) = Pr(A, = a4, | X, = ) Pr(X, = x,, R, = 1, X; = x;, A, = a;)
= f(x2, 0),,D(x1, Ay, X, 1)f (X1, 0), diy(X1)
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EPISODE PROBABILITIES

Pr(Hle — Tl;T) — d()(xl)f(x19 9)a1p(x19 ala xza rz)f(.Xz, Q)azp(x29 az, x39 r3)."p(xT9 aT? xT_|_19 rT-|—1)

T
= dy(x}) Hf (X, H)atp (Xps Qs Xy 15 Ty 1)
=1
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EPISODE DERIVATIVE

MAKE EPISODE MORE LIKELY

; 0 -
% hl PI'(Hl T = Tl T) — % ln (d()(xl)Uf(xt? Q)atp(xl" at’ 'xf+1’ rf+1)>

0
= [ln do(x;) + ; Inf(x, Q)at + Inp(x,a,x., 1, +1)]

— ln dy(x;) + Z — Inf(x, 0),

Inp(x,, a, X415 1)

89

T

D 9 f(x,, 0),
“o0 "
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EPISODE DERIVATIVE

MAKE EPISODE MORE LIKELY

; 0 -
% hl PI'(Hl T = Tl T) — % ln (d()(xl)nf(xt? Q)atp(xl" at’ xf+1’ rf+1)>

0
= [ln do(x;) + ; Inf(x, H)at + Inp(x,a,x., 1, +1)]

Inp(x,, a, X415 1)

— ln dy(x;) + Z —Infx, 0), +—

T

Y infs. ),

— 00 Do not need to know p to take the derivative!

Emma Jordan
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POLICY GRADIENT

EXPRESSION

0ln Pr (HI:T)

Vp0) = E | (G, — p(0)) Y

mmmmmmmmmm



POLICY GRADIENT

EXPRESSION

_, dInf (Xt)A

Vp6) =E (G, — p(6)) Z

The agent doesn’t need to model the world
to improve its decision.

mmmmmmmmmm



REINFORCE

SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

Idea: sample an episode 7 using actions from f(X,, &) and compute the sample estimate of the gradient.
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REINFORCE

SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

Collect_episode(0): Sample_gradient(states, actions, rewards, 6, p)
X ~ d G, < sum(rewards)
states =[], actions =[], rewards =[]
forr € {1,...,T} return (G, — p) Z il H)A
’ ’ 1 6
A, ~ f(X,, 0)

states.append(X)), actions.append(A,)
X, 1, R, ~ environment(X,, A,)
rewards.append(k, )

return states, actions, rewards

Emma Jordan 10/25/25 60



REINFORCE

SIMPLE STOCHASTIC POLICY GRADIENT ALGORITHM

REINFORCE(O, n, #, max_iters)
p <0
for itr In 1:max iters

states, actions, rewards = collect_episode(6)

N

V <« sample_gradient(states, actions, rewards, 6, p)
0 —0+nV
p < pp+(1-p)G,
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REINFORCE

PROPERTIES
High variance gradient estimates: Solutions:
® Observe one sampled episode ® Sample multiple episodes
® The cumulative reward G is high-variance 0 In f(X,, H)At
o Use G, for each
® R,_,has noimpacton A, 00

® Predict G, give X,

Emma Jordan 10/25/25 62



GRADIENT ESTIMATE

A MORE COMMON GRADIENT ESTIMATE

Sample_gradient(states, actions, rewards, &, V)
Gy, Gy, ..., G < cumulative_rewards(rewards)
dIn f(X, H)At
00

T
V < ) (G,—v(X))
=1

return V

mmmmmmmmmm



POLICY GRADIENT METHODS

SOME GOOD THINGS TO KNOW

They mix exploration (trying new actions) with exploitation (trying actions that worked well)
If a large step is taken (usually with large #) the following can happen:
The agent oversteps and the policy can diverge (same as in supervised learning)
The agent overcommits to sub-optimal actions, I.e.,
it won't try any new actions anymore

and cannot keep improving.

Policy gradient methods often get stuck in flat gradient spaces and stop trying new actions.
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RL FOR TRAINING LANGUAGE MODELS

GENERAL SET UP

Supervised pretraining

Minimize negative log-likelihood on next token prediction over a large data set

Goal: have the model generate text that is preferable to the user.
Problem: next token prediction does not mean generating useful responses
Solution: Sample text outputs and score the outputs. Make the outputs that score better more likely!

This is the policy gradient process!
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RL FOR TRAINING LANGUAGE MODELS

MORE SPECIFIC

X1.; initial context
)A(kﬂzt ~ f(X,.1, 0) generated output

G = r(X,.,) score for the entire text

p(0) = E[G]
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SCORING TEXT

What 1s deep learning?

Deep learning 1s a mathematical framework for constructing a
layered composition of functions that can be trained via gradient
descent.
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SCORING TEXT

What 1s deep learning?
Deep learning is a subset of machine learning that focuses on using artificial neural networks to model and solve complex problems. It 1s inspired by the structure and
function of the human brain, particularly how neurons connect and communicate with one another.

Key Features of Deep Learning:
1.Neural Networks: Deep learning uses multi-layered neural networks, often called deep neural networks, where each layer extracts increasingly abstract features

from the data.
2.Large Data Requirements: Deep learning algorithms typically require large datasets to achieve high accuracy, as they need extensive examples to generalize well.
3.Representation Learning: It automatically discovers the representations needed for feature detection or classification from raw data, reducing the need for manual
feature extraction.
4.Complex Problem Solving: It excels at tasks involving complex data like images, audio, text, and video.

Common Architectures in Deep Learning:

1.Convolutional Neural Networks (CNNs): Used primarily for image and video recognition.

2.Recurrent Neural Networks (RNNs): Effective for sequential data like time series and natural language.

3. Transformers: Revolutionized natural language processing (NLP) with models like GPT and BERT.
4.Autoencoders: Used for unsupervised learning, such as anomaly detection or data compression.

S.Generative Adversarial Networks (GANs): Generate new data similar to the training data, such as synthetic images
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SCORING TEXT

What score should we assign to each one?

Emma Jordan

What 1s deep learning?

Deep learning 1s a mathematical framework tor
constructing a layered composition of functions
that can be trained via gradient descent.

What 1s deep learning?

Deep learning is a subset of machine learning that focuses on using
artificial neural networks to model and solve complex problems. It
1s inspired by the structure and function of the human brain,
particularly how neurons connect and communicate with one
another.

Key Features of Deep Learning:

1.Neural Networks: Deep learning uses multi-layered neural
networks, often called deep neural networks, where each layer
extracts increasingly abstract features from the data.

2.Large Data Requirements: Deep learning algorithms typically
require large datasets to achieve high accuracy, as they need
extensive examples to generalize well.
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SCORING TEXT

What score should we assign to each one?
Extremely difficult to construct a scoring system!

Rewarding intuitive things (e.g., length) can produce
undesired consequences (e.dg., generating super-long
answers).

Humans have preferences, e.g.,

Rank one output as better than another

Emma Jordan

What 1s deep learning?

Deep learning 1s a mathematical framework tor
constructing a layered composition of functions
that can be trained via gradient descent.

What 1s deep learning?

Deep learning is a subset of machine learning that focuses on using
artificial neural networks to model and solve complex problems. It
1s inspired by the structure and function of the human brain,
particularly how neurons connect and communicate with one
another.

Key Features of Deep Learning:

1.Neural Networks: Deep learning uses multi-layered neural
networks, often called deep neural networks, where each layer
extracts increasingly abstract features from the data.

2.Large Data Requirements: Deep learning algorithms typically
require large datasets to achieve high accuracy, as they need
extensive examples to generalize well.
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APPROXIMATING HUMAN PREFERENCES

(0., X;.1» Xi4+1.) = human’s preferences between two samples X;_ ;.,and X, _ ;..

Let X, . ;., be the human prefered generation

l(‘gr) =K lln (0 (}’(Hr, Xl:k? X12+1:t) - 7‘(9,,, Xl:k’ Xk+1it)) )]
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Xk+1:t ~ f(Xlzk’ 6)

p0) = E [7‘(9,,, XY o Xk+1:t)]

mmmmmmmmmm



Xk+1:t ~ f(Xlzka 6)

p(0) = E [7‘(9,,, X ko Xk+1:t)]

arg max p(0) will overfit to learned preferences r(@,, ...)
v,
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RLHF

ldea: keep generated outputs close to that from the supervised learning model.

0¢; — weights learned from supervised learning

f(XIZk’ Q)Xkﬂzt

10(9) — E ;,-(Hr,X ;kan ;) +,51n
1 +1:2 f(Xl;ka HSL)Xk+1:t
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RLHF

SUMMARY

lterative process:
1. Sample model outputs
Collect human rankings of outputs

Model the ranking (learning r)

> WP

Optimize the model (arg max p(6))
0

5. Repeat
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RLHF

Still an active area of research!
Many problems:

Estimating 7 is very difficult
Optimizing @ of leads to overfitting and not producing diverse text

Collecting human feedback
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RLHF

Still an active area of research!
Many problems:
Estimating 7 is very difficult
Optimizing @ of leads to overfitting and not producing diverse text

Collecting human feedback

Human feedback data is collected from poorer parts of the world where workers are in harsh conditions!

Human feedback does not mean the model is correct. Humans are wrong all the time and contain their own
biases.
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NEXT CLASS

Reinforcement Learning from Human Feedback
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