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Every Opinion Matters: 

Distributional and Long-tail Evaluation for LLMs
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Impressive Progress in AI

2
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Diverse commonsense knowledge is the foundation for building models that truly 

understand and serve the world with diverse populations.

Models Need Diverse Commonsense Knowledge with Different Views!

Impressive Progress in AI
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They boiled the water.

What is Common Sense?
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They boiled the water.

What is Common Sense?
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Humans drink water.

Water needs to be held in a container.

Water can be used to wash clothes.Water can be found in river.
Water can be used for cleaning.

Water is wet.Water evaporates.

Water is liquid.

What is Common Sense?

6

Shared

They boiled the water.
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Humans drink water.

Water needs to be held in a container.
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Water can be used for cleaning.
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What is Common Sense?

9

Shared Everyday MattersImplicit

They boiled the water.
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Why is Common Sense Challenging?

10

Water is liquid.

Humans drink water.

Water needs to be held in a container.

Water can be used to wash clothes.
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Heat is needed to boil water.

Burner can provide heat.
Boiled water can cook food.

Water can be found in river.

They boiled the water.



/ 119

Water is liquid.

Humans drink water. Water needs to be held in a container.

Water can be used to wash clothes.

Water can be used for cleaning.

Water is wet.

Water evaporates.

Boiled water is too hot to drink.

Heat is needed to boil water.

Burner can provide heat.

Boiled water can cook food.

Why is Common Sense Challenging?

11

Water can be found in river.
Sugar can melt in water 

Sweet water tastes good

Human feel satisfied after having sweet stuff.

Humans drink water.

Water needs to be held in a container.

Sunset time is usually in the afternoon

Heat is needed to boil water.

There is water in the river

A knife with peanut butter could be the tool.

Sweet water tastes good

Human feel satisfied after having sweet stuff.

Human can put peanut butter on the bread

Some people hate sugar.

People who wants to lose weight usually avoid peanut butter.

Peanut butter can be spread

Peanut butter on the bread is usually breakfast.

Peanut butter is high calorie food.

Opening a jar needs tool

Water needs to be held in a container.

Water can be used for cleaning.

Water is wet.

Heat is needed to boil water.

Boiled water can cook food.

Sweet water tastes good

Human needs water to live.

Water needs to be held in a container. Sugar water is wet.

Boiled water can cook food.

Sunset can be beautiful.

Order food means choosing dishes on the menu.

Water can be used for cleaning.

Sometimes the ordering is automatic too.
There are usually waiter helping you order food.

Water needs to be held in a container.

Human feel satisfied after having sweet stuff.
People walk into restaurant through door

Water is wet.

Boiled water can cook food.

Water needs to be held in a container.

Humans drink water.

Walking into a restaurant usually at breakfast/lunch/dinner time.

Water is wet.

Ordering food needs menu

Boiled water can cook food.

Massive

Water needs to be held in a container.
Water can be used for cleaning.

Boiled water can cook food.

Heat is needed to boil water.

Humans drink water.

People are walking along the river bank.

Human feel satisfied after having sweet stuff.

Person can open jar, but not dogs

The kind of bread that can add peanut butter is flat.

Restaurant serves food.

River water is not directly drinkable.

People needs tools to put peanut butter on the bread.

Some people love sugar.

Some people hate peanut butter.

Some people are allergic to peanut butter.

Allergy reactions can be very serious, life-threatening.

There is water in the river

A knife with peanut butter could be the tool.
Bread with peanut butter can be satisfying.

Peanut butter is sweet

Most bread is not sweet

People who wants to lose weight usually avoid peanut butter.

Water can be used for cleaning.

Some people love sugar.

Most bread is not sweet

Water can be used to wash clothes.

Water can be used for cleaning.

Boiled water is too hot to drink.

Heat is needed to boil water. There are usually waiter helping you order food.

Boiled water can cook food.

People walk into restaurant through door

Water needs to be held in a container.
Walking into a restaurant usually at breakfast/lunch/dinner time.

Ordering food needs menu
Boiled water can cook food.

Person can open jar, but not cats.

Sometimes the ordering is automatic too.

Sugar water is also liquid.

Water can be used for cleaning.

Water needs to be held in a container.

People are walking along the river bank.

When it’s cloudy, sometimes there is no sunset.

They boiled the water.

Open the jelly jar.

Spread the peanut butter on the bread.

They boiled the water, then added sugar.

They walked along the river at sunset time.

She walked into a restaurant and started ordering

Tom asked me how to get to the library.
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Why is Common Sense Challenging?

12

Massive

They boiled the water.

Open the jelly jar.

Spread the peanut butter on the bread.

They boiled the water, then added sugar.

They walked along the river at sunset time.She walked into a restaurant and started ordering

Tom asked me how to get to the library.
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Water is liquid.

Humans drink water.

Water can be used to wash clothes.Water can be found in ocean.
Water can be used for cleaning.

Water is wet.Water evaporates.

Water needs to be held in a container. Boiled water is too hot to drink.
Heat is needed to boil water.

Burner can provide heat.
Boiled water can cook food.

Why is Common Sense Challenging?

13

Massive

They boiled the water.
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Why is Common Sense Challenging?

14

Massive

In what? Using what?

They boiled the water.
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Why is Common Sense Challenging?

15

Massive

In what?

Pot

Kettle

Glass

Etc.

Microwave

Stove

Etc.

Using what?

They boiled the water.

Beaker

Bunsen burner
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Why is Common Sense Challenging?
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ProbabilisticMassive

In what? Using what?

They boiled the water.

Pot

Kettle

Glass

Etc.

Beaker

Microwave
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Why is Common Sense Challenging?

18

ProbabilisticMassive

In what? Using what?

They boiled the water 

and added spaghetti.

Pot

Kettle

Glass

Etc.

Beaker

Microwave

Stove

Etc.

Bunsen burner
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Why is Common Sense Challenging?

19

ProbabilisticMassive

In what? Using what?

They boiled the water 

and added spaghetti.

Pot

Glass

Etc.

Stove

Etc.
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Why is Common Sense Challenging?

20

ProbabilisticMassive

In what? Using what?

They boiled the water 

and added spaghetti.

Pot

Glass

Etc.

Stove

Etc.

Contextual
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Common Sense in Language Model

21
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aNLI
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2020

Fine-tuned SOTA Human

Models based on large language models show impressive performance on many commonsense question answering tasks.
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Models based on large language models show impressive performance on many commonsense question answering tasks.

Do language models learn common sense?

22

To answer the question, we perform a systematic study


• Focus on language model itself.


• Without task-specific supervision.


• Without model parameter update.

Zero-shot evaluation on language models

Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan et al. "Language models are few-shot learners." NeurIPS 2020
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Do language models learn common sense?

23

Dataset Example Number of 
Choices

Reasoning Type

Physical IQa

(Bisk et al. 2019)

Question: To apply eyeshadow without a brush, should I use a cotton swag or a 
toothpick?

Answer: Cotton swab.

2 Physical

Social IQa 

(Sap et al. 2019)

Question: Tracy had accidentally pressed upon Austin in the small elevator and it was 
awkward. Why did Tracy do this?

Answer: Squeeze into the elevator

3 Social

WinoGrande 
(Sakaguchi et al. 2019)

Question: The trophy didn’t fit the suitcase, because it is too big. What does it refers to?

Answer: The trophy 2 Physical,


Social etc

HellaSwag 
(Zellers et al. 2019)

Question: Four sentence short story.

Answer: the possible ending. 4 Temporal, 

Physical etc

Four multiple choice selection QA datasets.

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Do language models learn common sense?

24

Question: Tracy had accidentally pressed upon Austin in the small elevator 

and it was awkward. Why did Tracy do this?


• Answer a: get very close to Austin.


• Answer b: squeeze into the elevator.


• Answer c: get flirty with Austin.

question, answer a score a

score b

score c

Prediction: 

MAX (score a, score b, score c)

Language Modelquestion, answer b

question, answer c

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Zero-shot Performance: random baseline

25
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Figure: the dev accuracy for each dataset evaluated on Gopher.

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Zero-Shot is not bad, especially for HellaSwag and PIQA


26

Figure: the dev accuracy for each dataset evaluated on Gopher.

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Figure: the dev accuracy for each dataset evaluated on Gopher.
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How much of the performance comes only from answers?

27

answer a: get very close to Austin.

answer b: squeeze into the elevator.

answer c: get flirty with Austin.

score a

score b

score c

Prediction: 

MAX (score a, score b, score c)

Language Model

Answer-only Baseline: should be similar to random baseline

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Models pick the correct answer without seeing the question 

28
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We need better commonsense evaluation!

29
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Dataset Bias!

Figure: the dev accuracy for each dataset evaluated on Gopher.

Li, Kuncoro, Hoffmann, d’Autume, Blunsom, Nematzadeh. ``A Systematic Investigation of Commonsense Knowledge in Large Language Models”    EMNLP2022.
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Outline

30

Benchmark: Probabilistic Evaluation for Common Sense Question with Multiple-answers

• Every Answer Matters: Evaluating Commonsense with Probabilistic Measures. [ACL 2024]

• Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity. [EMNLP 2025]

Benchmark: Long-tail Question: Commonsense Reasoning Evaluation

• UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations. [NAACL 2024]

• In search of the long-tail: systematic generation of long-tail knowledge via logical rule guided search [EMNLP 2024]

• Think Globally, Group Locally: Evaluating LLMs Using Multi-Lingual Word Grouping Games. [EMNLP 2025] 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• Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity. [EMNLP 2025]

Benchmark: Long-tail Question: Commonsense Reasoning Evaluation

• UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations. [NAACL 2024]

• In search of the long-tail: systematic generation of long-tail knowledge via logical rule guided search [EMNLP 2024]

• Think Globally, Group Locally: Evaluating LLMs Using Multi-Lingual Word Grouping Games. [EMNLP 2025] 



/ 119

Advertisement Creativity

32

Qi Cheng Xiang Lorraine Li

Every Answer Matters: Evaluating 
Commonsense with 

Probabilistic Measures

Tim O’ GormanMichael Boratko Pranay Yelugam Nalini Singh
Andrew 


McCallum



Probabilistic Evaluation of Commonsense

Pot

Kettle

Glass

Etc.

Beaker

In what?

They boiled the water.

 / 11933



Probabilistic Evaluation of Commonsense
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In what?

Answers

ProbabilityThey boiled the water.

Any language tasks!Question Answering Dialogue

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024  / 11934
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CFC Data Collection

Context 
Sentence

“Dog catches the 
thrown frisbee.”

CommonGen (Image Captions)

We crowd-source high-quality evaluation data

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

Context 
Sentence

Semantic

Parsing

“Dog catches the 
thrown frisbee.”

We crowd-source high-quality evaluation data

CommonGen (Image Captions) AMR Parsing

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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Context 
Sentence

Semantic

Parsing

Missing Slot

Identification

“Dog catches the 
thrown frisbee.”

“Who throws 
the frisbee?”

We crowd-source high-quality evaluation data

CFC Data Collection

CommonGen (Image Captions) AMR Parsing AMR-unknown

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection
We crowd-sourced high-quality 101 questions (manual filtering)

Context 
Sentence

Semantic

Parsing

Missing Slot

Identification

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection
We crowd-sourced high-quality 101 questions (manual filtering)

Location
35%

Instrument
9%

Time
11%

Arg0
31%

Purpose
15%

Context 
Sentence

Semantic

Parsing

Missing Slot

Identification

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

“They boiled the water” Purpose?
cooking

cook foodto cook

disinfect

cooking spaghetti

clean

for making tea

cook make tea

steaming vegetables
boiling potatoes

Crowd Workers

disinfecting
making dinner

cleaning

boiling chicken
sterilization

make safe to drink

for an experiment

for a hot drink

making pasta

purify

cleaning tools

kill bacteria

purification

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

How many answers are 

enough to approximate 

the true human answer 

distribution?

cooking
cook food

to cook

disinfect

cooking spaghetti

cleanfor making tea

cook

make tea

steaming vegetables
boiling potatoes

disinfecting

making dinner

cleaning

boiling chicken

sterilization

make safe to drink

for a hot drink

purify

cleaning tools

kill bacteria

purification

making pasta

for an experiment

0.25

0.5

“They boiled the water” Purpose?

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

How many answers are 

enough to approximate 

the true human answer 

distribution?

ℙ(DKL(gn,k∥f ) ≥ ϵ) ≤ e−nϵ [ 3c1

c2

k−2

∑
i=0

Ki−1(
e n
2π

)i]

• Classic problem in statistics. 


- KL divergence between [Neyman-Pearson lemma]


➡ true distribution  and empirical sample distribution . 


- The approximated error rate is bounded by [1] 


-  test


➡

f g

[1] Mardia, Jay, Jiantao Jiao, Ervin Tánczos, Robert D. Nowak, and Tsachy Weissman. "Concentration inequalities for the empirical distribution of discrete distributions: beyond the method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

How many answers are 

enough to approximate 

the true human answer 

distribution?

• Classic problem in statistics. 


- The approximated error rate is bounded by [1] 


-  test


➡    


➡  
ℙ(DKL(gn,k∥f ) ≥ ϵ) ≤ e−nϵ [ 3c1

c2

k−2

∑
i=0

Ki−1(
e n
2π

)i]

- : KL error rateϵ

- : number of samplesn

- : number of category in the categorical distributionk

[1] Mardia, Jay, Jiantao Jiao, Ervin Tánczos, Robert D. Nowak, and Tsachy Weissman. "Concentration inequalities for the empirical distribution of discrete distributions: beyond the method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

How many answers are 

enough to approximate 

the true human answer 

distribution?

• Classic problem in statistics. 


- The approximated error rate is bounded by [1] 


-  test


➡    


➡  
ℙ(DKL(gn,k∥f ) ≥ ϵ) ≤ e−nϵ [ 3c1

c2

k−2

∑
i=0

Ki−1(
e n
2π

)i]

- : KL error rate = 0.2ϵ

- : number of samplesn

- : number of category in the categorical distribution = 8k

[1] Mardia, Jay, Jiantao Jiao, Ervin Tánczos, Robert D. Nowak, and Tsachy Weissman. "Concentration inequalities for the empirical distribution of discrete distributions: beyond the method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection
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enough to approximate 

the true human answer 
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• Classic problem in statistics. 


- The approximated error rate is bounded by [1] 


-  test


➡    


➡  

- : KL error rate = 0.2ϵ

- : number of samplesn

- : number of category in the categorical distribution = 8k

ℙ(DKL(gn,k∥f ) ≥ ϵ) ≤ e−nϵ [ 3c1

c2

k−2

∑
i=0

Ki−1(
e n
2π

)i]

[1] Mardia, Jay, Jiantao Jiao, Ervin Tánczos, Robert D. Nowak, and Tsachy Weissman. "Concentration inequalities for the empirical distribution of discrete distributions: beyond the method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Collection

How many answers are 

enough to approximate 

the true human answer 

distribution?

~97. we collect 100 

answers for each 

question.

• Classic problem in statistics. 


- The approximated error rate is bounded by [1] 


-  test


➡    


➡  

- : KL error rate = 0.2ϵ

- : number of samplesn

- : number of category in the categorical distribution = 8k

ℙ(DKL(gn,k∥f ) ≥ ϵ) ≤ e−nϵ [ 3c1

c2

k−2

∑
i=0

Ki−1(
e n
2π

)i]

[1] Mardia, Jay, Jiantao Jiao, Ervin Tánczos, Robert D. Nowak, and Tsachy Weissman. "Concentration inequalities for the empirical distribution of discrete distributions: beyond the method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Data Statistics

We crowd-sourced high-quality 101 questions (manual filtering)


• 55 Dev Questions


• 46 Test Questions


Each question have 100 answers to accurately approximate human 

distribution.


• Questions: They boiled the water. Purpose?


• Answers:

Location
35%

Instrument
9%

Time
11%

Arg0
31%

Purpose
15%

Question Slot Type

cook, cook noodles, cook pasta, bake cake, boil eggs, pasta, make pasta, cook meal, 

to make tea, coffee, make coffee, to make it safe to drink, to sterilize it, to remove 

germs and make it safe to drink …

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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Crowd Workers

CFC Probabilistic Evaluation

“They boiled the water” Purpose?

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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cooking

cook foodto cook

disinfect

cooking spaghetti

clean

for making tea

cook make tea

steaming vegetables
boiling potatoes

Crowd Workers

disinfecting
making dinner

cleaning

boiling chicken
sterilization

make safe to drink

for an experiment

for a hot drink

making pasta

purify

cleaning tools

kill bacteria

purification

CFC Probabilistic Evaluation

“They boiled the water” Purpose?

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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cooking

cook foodto cook

disinfect

cooking spaghetti

clean

for making tea

cook make tea

steaming vegetables
boiling potatoes

Crowd Workers

disinfecting
making dinner

cleaning

boiling chicken
sterilization

make safe to drink

for an experiment

for a hot drink

making pasta

purify

cleaning tools

kill bacteria
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CFC Automatic Evaluation

56

Cluster G
Match H to clusters of G
Calculate score

For each question:

G ← ground-truth answers (crowd-sourced)

H ← evaluation answers (model) 

For each human scorer:


Score(G, H ) ← average of scores


Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Automatic Evaluation

58

Embed G Cluster G Match H to cluster of G Calculate Score

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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CFC Automatic Evaluation
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Embed G Cluster G Match H to cluster of G Calculate Score

CFC Automatic Evaluation

60

With Context

• BERT

• RoBERTa

Without Context

• word2vec

• GloVe

• FastText
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CFC Automatic Evaluation
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Clustering Algorithm

• K-Means

• G-Means [1]

• Hierarchical 

agglomerative clustering

Embed G Cluster G Match H to cluster of G Calculate Score

[1] Zhao, Zhonghua et al. “G-Means: A Clustering Algorithm for Intrusion Detection.” ICONIP (2008).
Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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Embed G Cluster G Match H to cluster of G Calculate Score

CFC Automatic Evaluation
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Embed G Cluster G Match H to cluster of G Calculate Score

CFC Automatic Evaluation
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Embeddings Based

• FastText

Lexical Token Based

• WordNet
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Embed G Cluster G Match H to cluster of G Calculate Score

CFC Automatic Evaluation

64

0.25

0.5

0.2

0.4

P = Q = 

Score (G, H) = KL (P || Q)

Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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Evaluating Automatic Metric

65

Given a question, and a large prediction set


• Sample n predicted answer sets.


s1, s2, s3, s4, s5…


• Using human annotations, score answer sets:


H: [s2, s5, s4, s3, s1…]


• Using automatic evaluation, score answer sets:


A: [s2, s4, s3, s1, s5]


• Calculate Spearman correlation between H and A


Qi, Boratko, Yelugam, O’Gorman, Singh, McCallum, Li. “Every Answer Matters: Evaluating Commonsense with Probabilistic Measures” ACL 2024
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Table: Spearman correlation between human KL score and automatic KL score

66

Evaluating Automatic Metric

Clustering Gmeans Xmeans	 Hierarchical agglomerative 
clustering (HAC)

Matching FastText WordNet FastText WordNet FastText WordNet

ProtoQA 
Correlation

0.528 0.681 0.525 0.668 0.593 0.698

CFC

Correlation

0.561 0.721 0.503 0.728 0.564 0.728

Fix automatic evaluator parameters 

•with the best correlation score 

•using CFC dev data.
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Evaluating Automatic Metric
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clustering (HAC)
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Ours

Evaluating Automatic Metric - PROBEVAL

ProtoQA Evaluator

X-axis: KL with human cluster and matching

Y-axis: automatic evaluator score (kl or 1-protoqa score)

Five random questions are annotated with different colors
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Model Performance

0
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Advertisement Creativity

71

Joey Hou Adriana Kovashka Xiang Lorraine Li

Leveraging Large Models to Evaluate 
Novel Content A Case Study on 

Advertisement Creativity
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Which image ads is more creative

72
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On the scale from 1 to 3, 

What’s their creativity level?

73
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Advertisement Creativity

74Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity [In submission]

It’s a subjective task

How will VLMs perform on subjective tasks like this?
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Ads Creativity Dataset Construction

• Ads Images 

◦Subsets: Creative-100 and Atypical-300

◦Topics: clothing, food, automobile, beauty, leisure, electronics, drinks, 
service, non-commercial, and healthcare 


• Fine-grained Annotation (Creative-100)

◦Atypicality, Originality, Overall Creativity [3]

◦Annotators: Amazon Mechanical Turk

◦25 annotations per data point

75
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Ads Creativity Tasks

• Distribution Modeling: Simulate human group behavior
◦Task Setup: VLM simulates scores distribution by repeated prompting (for creativity, 

atypicality, originality)
◦Metrics
▪KL Divergence (human scores V.S. VLM scores)
▪Spearman’s Correlation (human scores V.S. VLM scores)

• Pairwise Evaluation
◦Task Setup: VLM predicts which advertisement is more creative/atypical/original
◦Metric: Accuracy (binary)

• Disagreement Prediction: estimate the level of disagreement and ambiguity 
◦Task Setup: VLM directly predicts disagreement level (3 scale)
◦Metric: Spearman’s Correlation (human std. V.S. VLM prediction)

76
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Ads Creativity: Findings

• Great performance for the pair-wise task.

77
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Ads Creativity: Findings

• Okay results for distributional modeling tasks, similar to CFC.
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Ads Creativity: Findings

• The disagreement task is the 
hardest. 


• The model can’t predict 
when there is greater 
disagreement/subjectivity for 
specific instances.

79
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Why is performance so bad?

80

Common 

Commonsense

UnCommon 

Commonsense
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Why is performance so bad?
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Common 

Commonsense

UnCommon 

Commonsense

New domain: creative thinking, complex reasoning, etc

New language: low-research language, etc



/ 119

Creative Thinking

• New pre-prints! 


• CreativityPrism: A Holistic Benchmark for Large Language Model Creativity 

83
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Outline

84

Benchmark: Probabilistic Evaluation for Common Sense Question with Multiple-answers

• Every Answer Matters: Evaluating Commonsense with Probabilistic Measures. [ACL 2024]

• Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity. [EMNLP 2025]

Benchmark: Long-tail Question: Commonsense Reasoning Evaluation

• UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations. [NAACL 2024]

• In search of the long-tail: systematic generation of long-tail knowledge via logical rule guided search [EMNLP 2024]

• Think Globally, Group Locally: Evaluating LLMs Using Multi-Lingual Word Grouping Games. [EMNLP 2025] 

New domain: creative thinking, complex reasoning, etc

New language: low-research language, etc



/ 119

Outline

85

Benchmark: Probabilistic Evaluation for Common Sense Question with Multiple-answers

• Every Answer Matters: Evaluating Commonsense with Probabilistic Measures. [ACL 2024]

• Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity. [EMNLP 2025]

Benchmark: Long-tail Question: Commonsense Reasoning Evaluation

• UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations. [NAACL 2024]

• In search of the long-tail: systematic generation of long-tail knowledge via logical rule guided search [EMNLP 2024]

• Think Globally, Group Locally: Evaluating LLMs Using Multi-Lingual Word Grouping Games. [EMNLP 2025] 

Complex 

reasoning

Multi-lingual



Think Globally, Group Locally:
Evaluating LLMs Using Multi-Lingual 

Word Grouping Games

César Guerra-Solano1, Zhuochun Li2, Xiang Lorraine Li1

1Department of Computer Science,
2Department of Informatics and Networked Systems

University of Pittsburgh, PA, USA

CS 
Undergrad!
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The New York Times ConnectionsThe New York Times Connections
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Connections as an Evaluation

• Work has explored Connections as an 
abstract reasoning evaluation

• Lack of a clear strategy

• Identifying/connecting properties of words

• (Todd et al., 2024; Samadarshi et al., 2024)


• Lack of explainability with model 
performance


• Bias towards the English language && 
Western/North American culture

Connections as an Evaluation

/11988
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👩🎨👨💻

👸
👩⚕
👨⚖

Native speaking 
annotators … … … …

Grouping creation, translation, 
tagging

Gl🌎bal Group
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Sampling

NG groups,

NW words


from each group

Gl🌎bal Group
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Gl🌎bal Group
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• Evaluated 2 closed-source, 4 open-source models

• GPT-3.5-Turbo, GPT-4

• Llama3-8B, Llama3.1-70B


• Size comparison

• Mistral-7B

• Aya-8B


• Multilingual training paradigm

Model Evaluation

/11993



Model Output
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English Representations Improve PerformanceEnglish Representations Improve Performance

/11998



English Representations Improve Performance

/11999



English Representations Improve Performance

/119100



English Representations Improve Performance

/119101



English Representations Improve Performance

/119102



Multilingual Training Greatly Improves Small Models

• Represent models as 
vectors of dataset 
performance

• Plot first two PCs after PCA

Multilingual Training Greatly Improves Small Models
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• Represent models as 
vectors of dataset 
performance

• Plot first two PCs after PCA


• Aya-8B far smaller than 
GPTs and Llama 70B

• Yet performs very similarly!

• Multilingual training

Multilingual Training Greatly Improves Small Models

/119104



• We hypothesize, outside of language, key game parameters are 
associated with difficulty

• Need for a controlled setting

Key Game Parameters Correlate with Difficulty
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Key Game Parameters Correlate with Difficulty

• We hypothesize, outside of language, key game parameters are 
associated with difficulty

• Need for a controlled setting


• We consider three potential game parameters

• Game size

• Word overlap between groupings

• Semantic similarity of groupings

Key Game Parameters Correlate with Difficulty
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Key Game Parameters Correlate with Difficulty

• Inconsistent trend with 
group size

Key Game Parameters Correlate with Difficulty
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Key Game Parameters Correlate with Difficulty
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Key Game Parameters Correlate with Difficulty

• Inconsistent trend with 
group size


• Great consistency with GC, 
ARI, Overlap

• Greater GC = lower 

performance

• Greater ARI = higher 

performance

• Greater Overlap = lower 

performance 😀 ❌

Key Game Parameters Correlate with Difficulty
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Performance is Related to Group ContentPerformance is Related to Group Content
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Conclusions & Future Work
- Abstract reasoning performance is language-dependent, with English 

modalities leading to the best performance 

- We show that this performance is associated with game parameters and 
group content, allowing controlled comparison 

- We demonstrate the value of a multilingual-focused training paradigm, 
letting small models perform on-par with far larger models

Performance is Related to Group ContentTakeways
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Takeaways from the talk

118

New domain: creative thinking, complext reasoning, etc

New language: low-research language, etc

A lot more others….

All other

NLP Tasks

Current English

NLP Tasks
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Summary

119

Benchmark: Probabilistic Evaluation for Common Sense Question with Multiple-answers

• Every Answer Matters: Evaluating Commonsense with Probabilistic Measures. [ACL 2024]

• Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity. [EMNLP 2025]

Benchmark: Long-tail Question: Commonsense Reasoning Evaluation

• UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations. [NAACL 2024]

• In search of the long-tail: systematic generation of long-tail knowledge via logical rule guided search [EMNLP 2024]

• Think Globally, Group Locally: Evaluating LLMs Using Multi-Lingual Word Grouping Games. [EMNLP 2025] 

Joey Hou Cesar Geurra-Solano Zhuochun LiQi Cheng

Thanks to the 
amazing students!


