Quiz (last one!)

- Go to **Quizzes > Quiz 11-05** on Canvas
- You have until 2:40pm to complete it
- Allowed resources
 - Textbook
 - Your notes (on a computer or physical)
 - Course slides and website
- Resources not allowed
 - Generative Al
 - Internet searches

CS 2731 Introduction to Natural Language Processing

Session 21: Sequence labeling

Michael Miller Yoder

November 5, 2025

Course logistics: homework

- Homework 3 has been released and is due this Fri Nov 7
 - Run Jupyter notebooks from templates on the CRCD
 - Part 1: LLM prompting
 - Part 2: Instruction tuning of an LLM
 - CRCD GPUs
- Homework 4 on sequency labeling will be released this week

Course logistics: project

- Project progress report due next Thu Nov 13
- Part 1: Task and dataset
 - Address the questions on basic dataset statistics, as well as how you will use your dataset to address your task
 - o If you do not have a "traditional" dataset, present rough equivalents
- Part 2: Some kind of a result
 - Options: Baseline system evaluation on your dataset, a result from your own system, an example output from your system
- Part 3: Open questions and challenges
 - Need any help or additional resources?

Structure of this course

MODULE 1	Introduction and text processin	g text normalization, mach	nine learning, NLP tasks	
	Approaches	How text is represented	NLP tasks	
MODULE 2	statistical machine learning	n-grams	language modeling text classification	
MODULE 3	neural networks	static word vectors	text classification	
MODULE 4	transformers and LLMs	contextual word vectors	language modeling text classification	
MODULE 5	Sequence labeling and parsing	named entity recognition, dependency parsing		
MODULE 6	NLP applications and ethics			

Overview: Sequence labeling

- Parts of speech
- Part-of-speech (POS) tagging
- Named entity recognition (NER)
- Fine-tuning BERT for sequence labeling

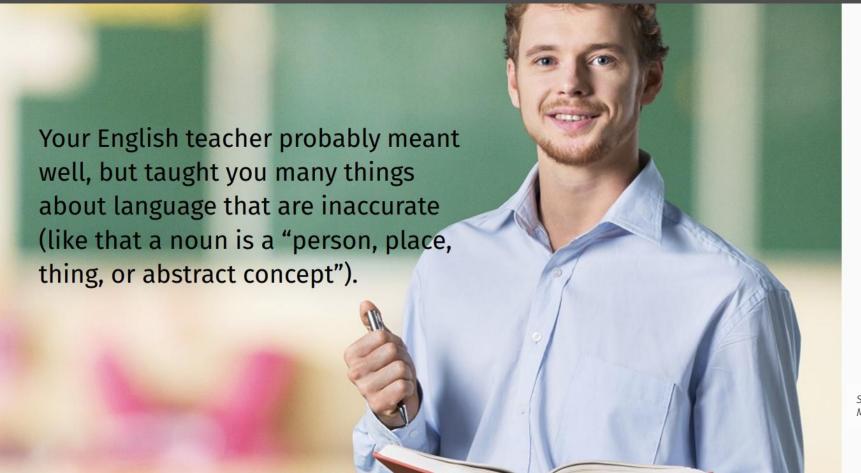
Parts of speech

My cat who lives dangerously no longer has nine lives.

My cat who lives dangerously no longer has nine lives.

My cat who lives dangerously no longer has nine lives.

```
lives /lɪvz/ verb
lives /lajvz/ noun
```



Examples of Parts of Speech

PART OF SPEECH	EXAMPLES
noun	dog, cat, professor, exam, fear, loathing, oppression, void, text, Bavarian
verb	enjoy, walk, finish, trust, hug, like, understand, be, text, drink
adjective	nice, happy, red, exciting, ludicrous, funny, ancient, Bavarian
adverb	slowly, quickly, shrewdly, foolishly, boisterously, undercover, yesterday
preposition	to, for, from, under, by
auxiliary verbs	be, have, must, might, will, would
determiner	the, a(n), this, that, my, her
pronouns	he, she, it, this, that
conjunctions	and, but, however, nevertheless, so

12

Your English Teacher Was a Well-Intentioned Liar

Slide credit: David Mortensen

Criteria from linguistics for parts of speech

Defining parts of speech by where they appear and what they are made of works better across languages than semantic definitions (so say the linguists).

```
morphology What is the distribution of morphemes within these words?
Same POS ⇒ similar morphemes
```

syntax What is the distribution of words within phrases and sentences? Same POS ⇒ similar roles/contexts

Open Class Parts of Speech

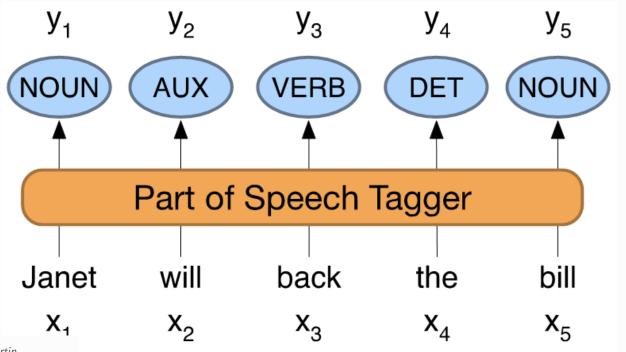
Classes to which neologisms are readily added. In English:

nouns	can be both subjects and objects of verbs and objects of prepositions, (usually) be singular or plural, have determiners, be modified by adjectives, and be possessed
verbs	can take noun phrases as arguments and tense morphology and can be modified by adverbs
adjectives	can modify nouns and take comparative and superlative morphology where allowed by prosody
adverbs	can modify verbs, adjectives, or other adverbs

Closed Class Parts of Speech

Classes to which neologisms are not readily added. In English:

prepositions	occur before noun phrases, connecting them syntactically to larger phrases	
determiners	occur at the beginning of noun phrases	
conjunction	join phrases, clauses, and sentences	
auxiliary verbs	occur before (non-finite) main verbs	
particles	are associated with a verb and are "moveable" (e.g. He tore off his shirt versus He tore his shirt off	
numerals	are distributed in some ways like nouns and in others like adjectives	


What about pronouns?

- Pronouns are generally considered, in English, to be a closed class it is not easy to add new items to it.
- What are we to make of **neopronouns** like *xe* and *xem* or *ze* and *hir*?
- Their existence suggests that pronouns are not a completely closed class
 - Social movements can change grammar!
 - But it is difficult due to anti-transgender attitudes and to pronouns being a rather closed class in English
- In some languages (e.g., Thai) pronouns clearly are an open class

Part of speech (POS) tagging

Part-of-speech tagging

Map from sequence $x_1, ..., x_n$ of words to $y_1, ..., y_n$ of POS tags

Why part of speech tagging?

Can be useful for other NLP tasks

- MT: reordering of adjectives and nouns (say from Spanish to English)
- Sentiment or affective tasks: may want to distinguish adjectives or other POS
- Text-to-speech (how do we pronounce "lead" or "object"?)
- Parsing: POS tagging can improve syntactic parsing

Or linguistic or language-analytic computational tasks

- Need to control for POS when studying linguistic change like creation of new words, or meaning shift
- Or control for POS in measuring meaning similarity or difference

"Universal Dependencies" tagset [Nivre et al. 2016]

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
Open Class	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Sen	VERB	words for actions and processes	draw, provide, go
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
🔰	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
ass	DET	Determiner: marks noun phrase properties	a, an, the, this
ロ	NUM	Numeral	one, two, first, second
Closed Class Words	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
130	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
i	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg


Penn TreeBank tagset for English

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

POS Tagging is a Disambiguation Task

Consider the following sentences:

1	'm	gonna	make	him	an	offer	he	can	't	refuse
PRO	V	AUX	V	PRO	DET	N	PRO	AUX	ADV	V
			N			V				N

There are eight different ways of tagging this sentence if words are taken out of context. POS Tagging task: **choose the best of these**.

23

How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common.

So ~60% of word tokens are ambiguous

E.g., back

earnings growth took a back/ADJ seat a small building in the back/NOUN a clear majority of senators back/VERB the bill enable the country to buy back/PART debt I was twenty-one back/ADV then

Sources of information for POS tagging

```
Janet will back the bill AUX/NOUN/VERB? NOUN/VERB?
```

Prior probabilities of word/tag

• "will" is usually an AUX

Identity of neighboring words

"the" means the next word is probably not a verb

Morphology and wordshape:

O Prefixes unable:

 \circ Suffixes importantly: -ly \rightarrow ADJ

○ Capitalization Janet: CAP → PROPN

 $un- \rightarrow ADJ$

Standard algorithms for POS tagging

Supervised Machine Learning Algorithms:

- Hidden Markov Models
- Conditional Random Fields (CRFs)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

All required a hand-labeled training set, all about equal performance (97% on English)

All make use of information sources we discussed

- Via human created features: HMMs and CRFs
- Via representation learning: Neural LMs

Named entity recognition (NER)

Named entities

- Named entity means anything that can be referred to with a proper name. Most common 4 tags:
 - ■PER (Person): "Marie Curie"
 - ■LOC (Location): "New York City"
 - ■ORG (Organization): "Stanford University"
 - ■GPE (Geo-Political Entity): "Boulder, Colorado"
- Often multi-word phrases
- O But the term is also extended to things that aren't entities:
 - dates, times, prices

28

Named entity tagging

The task of named entity recognition (NER):

- find spans of text that constitute proper names
- tag the type of the entity.

NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

- Sentiment analysis: consumer sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

Why NER is hard

- 1) Segmentation
 - In POS tagging, no segmentation problem since each word gets one tag.
 - In NER we have to find and segment the entities!
- Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO tagging [Ramshaw and Marcus 1995]

How can we turn this structured problem into a sequence problem like POS tagging, with one label per word?

[PER Jane Villanueva] of [ORG United Airlines Holding] discussed the [LOC Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
	O

BIO tagging

B: token that begins a span

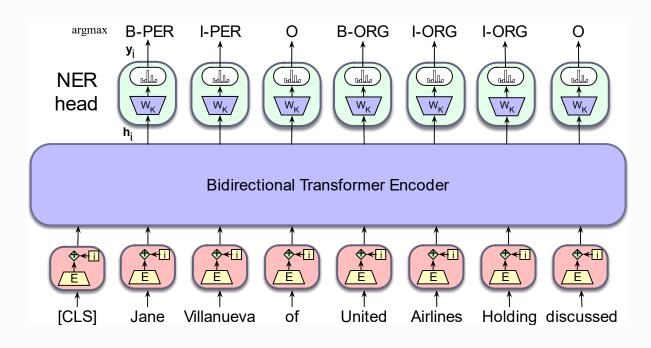
I: tokens inside a span

O: tokens outside of any span

of tags (where n is #entity types):

10 tag,

n B tags,


n I tags

total of 2n+1

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
	O

Finetuning BERT for sequence labeling

Sequence labeling

$$\mathbf{y_i} = \operatorname{softmax}(\mathbf{h_i^L} \mathbf{W_K})$$

 $\mathbf{t_i} = \operatorname{argmax}_k(\mathbf{y}_i)$

Slide adapted from Jurafsky and Martin

An alternative to BIO: span-based NER

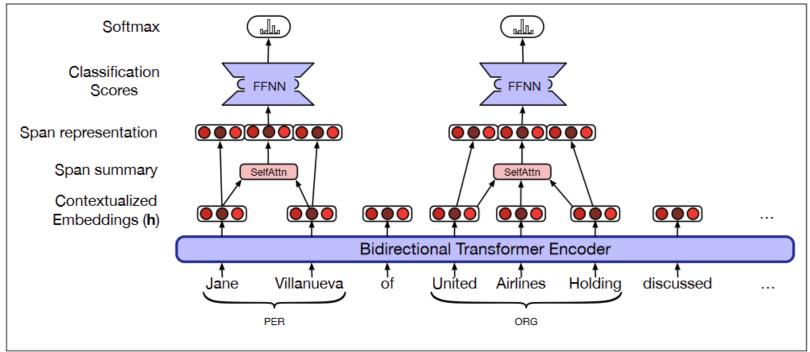


Figure 11.10 A span-oriented approach to named entity classification. The figure only illustrates the computation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the $\frac{T(T-1)}{2}$ spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit.

Conclusion

- Parts of speech are grammatical classes of words like nouns, verbs, and adjectives
- Part of speech (POS) tagging assigns a part of speech to every input word in context
- Named entity recognition (NER) is the task of identifying named entities like people, locations, and organizations
- NER can be framed as a sequence labeling task with a BIO framework
- BERT can be finetuned for sequence labeling

Questions?