
1https://xkcd.com/208/

https://xkcd.com/208/

CS 2731
Introduction to Natural Language Processing

Session 2: Words and tokens

Michael Miller Yoder

August 27, 2025

2

• Course logistics

• JupyterHub CRCD setup

• Words and corpora

• Morphemes

• Unicode

• Regular expressions

• Other text preprocessing

• Coding activity: preprocessing Airbnb listings
3

Overview: Words and tokens

● Reading for today was Jurafsky & Martin sections 2-2.4, 2.6-2.7, 2.10

● I will release Homework 0 today or tomorrow unless we all get set
up in class with CRCD JupyterHub fine

● Please remind me of your name before asking or answering a
question (just this class session)

4

Course logistics

5

CRCD JupyterHub setup

● CRCD (Center for Research Computing and Data) is a Pitt center
providing computing services on various clusters

● They maintain a JupyterHub where people can run Jupyter
Notebooks on their servers

● What we will be using the CRCD for:

○ Working through code examples in class

○ Writing code to submit as part of homework assignments

○ Running code and storing data for your projects (if you want to)

6

CRCD and JupyterHub

1. Go to jupyter.crc.pitt.edu in a
web browser

2. Log in with your Pitt
credentials

Note that if you are off-campus,
you have to log in to the Pitt VPN
first through the GlobalProtect
app. Instructions:
https://services.pitt.edu/TDClien
t/33/Portal/KB/ArticleDet?ID=293

7

Logging in to your CRCD
JupyterHub account

https://services.pitt.edu/TDClient/33/Portal/KB/ArticleDet?ID=293
https://services.pitt.edu/TDClient/33/Portal/KB/ArticleDet?ID=293

1. Partition: TEACH – 6 CPUs – 45 GB
We might use the GPU options later
on in the course

2. Under Select Virtual Environment,
keep base selected
We might use a custom
environment later on in the course

3. Click Start

4. Wait for the server to start up
8

Starting a Jupyter Notebook
on the CRCD JupyterHub

Files are here

You can launch a new Jupyter
Notebook by clicking Python 3
(ipykernel) under Notebook

10

Welcome to your
JupyterLab

Words and corpora

11

they lay back on the San Francisco grass and looked at the stars
and their

● How many?
○ 15 tokens (or 14 if you count "San Francisco" as one)
○ 13 types (or 12) (or 11?)

● Type: a unique word in the vocabulary
● Instance (token): an instance of a word type in running text
● Lemma: same stem, part of speech, rough word sense

○ cat and cats = same lemma
● Wordform: the full inflected surface form

○ cat and cats = different wordforms
12

How many words in this phrase?

Slide adapted from Jurafsky & Martin

Corpus: a (machine-readable) collection of texts

N = number of word instances

V = vocabulary = set of types, |V| is size of vocabulary

Instances = N Types = |V|

Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million
13

How many words in a corpus?

Slide adapted from Jurafsky & Martin

● Word (type) frequency is
inversely proportional to
word frequency rank

● "Long tail" of infrequent
words

● Similar to Zipf’s Law

14

Word frequencies: Heap’s Law

The Lexical Learner blog

● Texts don't appear out of nowhere!
● Language: 7097 languages in the world
● Variety, like African American Language varieties.

○ AAE Twitter posts might include forms like "iont" (I don't)
● Code switching, e.g., Spanish/English, Hindi/English:

Por primera vez veo a @username actually being helpful! It was beautiful:)

[For the first time I get to see @username actually being helpful! it was beautiful:)]

dost tha or ra- hega ... dont wory ... but dherya rakhe

[“he was and will remain a friend ... don’t worry ... but have faith”]

● Genre: newswire, fiction, scientific articles, Wikipedia
● Author Demographics: writer's age, gender, ethnicity, SES
● Corpus datasheets [Bender & Friedman 2018, Gebru+ 2020] ask about

this information 15

Corpora vary along dimensions like

Slide adapted from Jurafsky & Martin

16

Morphemes

● Morphemes: small meaningful units that make up words
○ Roots: The core meaning-bearing units
○ Affixes: Parts that adhere to roots

● Affixes can add grammatical meaning (inflections, 2nd column) or
modify semantic meaning (derivations, 3rd column)

17

Morphemes

Slide adapted from Jurafsky & Martin,
David Mortensen

○ e.g., the Turkish word:
Uygarlastiramadiklarimizdanmissinizcasina

'(behaving) as if you are among those whom we could not civilize'

Uygar 'civilized' + las 'become'
+ tir 'cause' + ama 'not able’
+ dik 'past’ + lar ‘plural’
+ imiz ‘1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

18

Dealing with complex morphology is necessary for many languages

Slide adapted from Jurafsky & Martin

19

Unicode

Unicode

a method for representing written text in
• any character (more than 150,000!)

• any script (168 to date!)

• of the languages of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…

• dead ones like Sumerian cuneiform

• invented ones like Klingon

• plus emojis, currency symbols, etc.
Slide adapted from Jurafsky & Martin

20

ASCII: Some history for English

● 1 byte per character
● Set of letters without

diacritical marks (such
as accent marks, etc)

● Encodings for special
characters used by
teletypes, too

1960s American Standard Code for Information Exchange

Slide adapted from Jurafsky & Martin
21

Code Points

● Unicode assigns a unique ID, a code point,
to each of its 150,000 characters

● 1.1 million possible code points
○ 0 – 0x10FFFF

● Written in hex, with prefix "U+"

○ a is U+0061 which = 0x0061

22
Slide adapted from Jurafsky & Martin

Some code points

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: a a a a
But all of them are U+0061, abstract "LATIN SMALL A"

23
Slide adapted from Jurafsky & Martin

Encodings and UTF-8

● We don't stick code points directly in files

● We store encodings of characters

● The most popular encoding is UTF-8

● Most of the web is stored in UTF-8

24
Slide adapted from Jurafsky & Martin

Variable Length Encoding

● UTF-8 (Unicode Transformation Format 8)
● UTF-8 encoding of hello is :

○ 68 65 6C 6C 6F

● Code points ≥128 are encoded as a sequence
of 2, 3, or 4 bytes
○ First few bits say if its 2-byte, 3-byte, or 4-byte

25

26

Tokenization

Why tokenize?

● Using a deterministic series of tokens
means systems can be compared equally
○ Systems agree on the length of a string

● Eliminates the problem of unknown words

Slide adapted from Jurafsky & Martin
27

● A very simple way to tokenize

● For languages that use space characters between words

○ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

● Segment off a token between instances of spaces

28

Space-based tokenization

Slide adapted from Jurafsky & Martin

● Can't just blindly remove punctuation:
○ m.p.h., Ph.D., AT&T, cap’n
○ prices ($45.55)
○ dates (01/02/06)
○ URLs (http://www.pitt.edu)
○ hashtags (#nlproc)
○ email addresses (someone@cs.colorado.edu)

● Clitic: a word that doesn't stand on its own
○ "are" in we're, French "je" in j'ai, "le" in l'honneur

● When should multiword expressions (MWE) be words?
○ New York, rock ’n’ roll

29

Issues in Tokenization

Slide adapted from Jurafsky & Martin

● Many languages (like Chinese, Japanese, Thai) don't use spaces to
separate words!

● How do we decide where the token boundaries should be?

30

Tokenization in languages without spaces between words

Slide adapted from Jurafsky & Martin

● Chinese words are composed of characters called "hanzi" (or
sometimes just "zi")

● Each one represents a meaning unit called a morpheme
● Each word has on average 2.4 of them.
● But deciding what counts as a word is complex and not agreed upon.

31

Word tokenization in Chinese

Slide adapted from Jurafsky & Martin

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

32

How to do word tokenization in Chinese?

Slide adapted from Jurafsky & Martin

● In Chinese NLP it's common to just treat each character (zi) as a token.
○ So the segmentation step is very simple

● In other languages (like Thai and Japanese), more complex word
segmentation is required.
○ The standard algorithms are neural sequence models trained by

supervised machine learning.

33

Word tokenization / segmentation

Slide adapted from Jurafsky & Martin

34

Subword tokenization & BPE

● Use the data to tell us how to tokenize.
● Subword tokenization (because tokens can be parts of words as well

as whole words)
● Many modern neural NLP systems (like BERT) use this to handle

unknown words
● 2 parts:

○ A token learner that takes a raw training corpus and induces a vocabulary
(a set of tokens).

○ A token segmenter that takes a raw test sentence and tokenizes it
according to that vocabulary

35

Another option for text tokenization

Slide adapted from Jurafsky & Martin

Byte Pair Encoding (BPE) token learner

Start with all characters
Repeat:

○ Choose most frequent
neighboring pair ('A', 'B')

○ Add a new merged symbol
('AB') to the vocabulary

○ Replace every 'A' 'B' in the
corpus with 'AB'.

Until k merges

Vocabulary
[A, B, C, D, E]
[A, B, C, D, E, AB]
[A, B, C, D, E, AB, CAB]

Corpus
A B D C A B E C A B
AB D C AB E C AB
AB D CAB E CAB

Iteratively merge frequent neighboring tokens to create longer tokens.

36
Slide adapted from Jurafsky & Martin

Original (very fascinating) corpus:

low low low low low lowest lowest newer newer newer newer newer
newer wider wider wider new new

Split on whitespace, add end-of-word tokens _

37

BPE token learner

Slide adapted from Jurafsky & Martin

● Merge e r to er

38

BPE token learner

Slide adapted from Jurafsky & Martin

● Merge er _ to er_
● Merge n e to ne

The next merges are:

39

BPE token learner

Slide adapted from Jurafsky & Martin

● On the test data, run each merge learned from the training data:

○ Greedily, in the order we learned them

● So merge every e r to er, then merge er _ to er_, etc.

● Result:

○ Test set "n e w e r _" would be tokenized as a full word

○ Test set "l o w e r _" would be two tokens: "low er_"

40

BPE token segmenter algorithm

Slide adapted from Jurafsky & Martin

41

Regular expressions (regex)

● A formal language for specifying text strings

● How can we search for any of these?

○ woodchuck
○ woodchucks
○ Woodchuck
○ Woodchucks

Regular expressions

42Slide adapted from Jurafsky & Martin

● Letters inside square brackets []

● Ranges [A-Z] [a-z] [0-9]
● Negations [^A-Z]

○ Carat means negation only when first in []
● Sequence disjunctions with pipe |

○ groundhog|woodchuck

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

43

Regular Expressions: Disjunctions (OR)

Slide adapted from Jurafsky & Martin

Stephen C Kleene

Pattern Matches

oo*h 0 or more
of previous
char

oh ooh oooh ooooh

o+h 1 or more
of previous
char

oh ooh oooh ooooh

beg.n Any char begin begun begun
beg3n

44

Regular Expressions wildcards: *+.

Slide adapted from Jurafsky & Martin

● Find all instances of the word “the” in a text.
the

● Misses capitalized examples

[tT]he

● Incorrectly returns "other" or "theology"

[^a-zA-Z][tT]he[^a-zA-Z]

45

Regular expression example

Slide adapted from Jurafsky & Martin

The process we just went through was based on
fixing two kinds of errors:
1. Matching strings that we should not have matched (there,

then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)

False negatives (Type II errors)

46

Errors

Slide adapted from Jurafsky & Martin

● Early NLP system that imitated a Rogerian psychotherapist
[Weizenbaum 1966]

● Uses pattern matching to match phrases

“I need X”

● and translates them into, e.g.

“What would it mean to you if you got X?

47

Simple Application: ELIZA

Slide adapted from Jurafsky & Martin

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

48

Simple Application: ELIZA

Slide adapted from Jurafsky & Martin

.* I’M (depressed|sad) .* → I AM SORRY TO HEAR YOU ARE \1

.* all .* → IN WHAT WAY?

.* always .* → CAN YOU THINK OF A SPECIFIC EXAMPLE?/

49

How ELIZA works

Slide adapted from Jurafsky & Martin

50

Other text preprocessing (normalization)

● Applications like IR: reduce all
letters to lowercase
○ Since users tend to use

lowercase
○ Possible exception: upper case in

mid-sentence?
■ e.g., General Motors
■ Fed vs. fed
■ SAIL vs. sail

● For sentiment analysis, MT,
information extraction
○ Case is helpful (US versus us is

important)

51

Case folding (lowercasing)

Slide adapted from Jurafsky & Martin

Represent words as their lemma: their shared root, dictionary headword
form:
○ am, are, is → be

○ car, cars, car's, cars' → car

○ Spanish quiero (‘I want’), quieres (‘you want’)

→ querer ‘want'

○ He is reading detective stories

→ He be read detective story

52

Lemmatization

Slide adapted from Jurafsky & Martin

● Reduce terms to stems, chopping off affixes crudely

This was not the map we found in
Billy Bones’s chest, but an
accurate copy, complete in all
things-names and heights and
soundings-with

Thi wa not the map we found in
Billi Bone s chest but an accur
copi complet in all thing name
and height and sound with

53

Stemming

Slide adapted from Jurafsky & Martin

● Do we want to keep "function words" like the, of, and, I, you, etc?

● Sometimes no (information retrieval)

● Sometimes yes (authorship attribution)

54

Stopword removal

● Word types are unique words
● Morphemes are the smallest meaning-bearing units within words
● Unicode represent characters for many languages and scripts in

code points which can be encoded into bytes with UTF-8
● Tokenization: splitting texts into sequences of words

○ Subword tokenization finds tokens based on frequencies of sequences
of characters in data

● Regular expressions match flexible sequences of characters
● Lemmatization: normalizing words to their dictionary roots
● Stemming: chopping off affixes of words to reduce them to stems
● Stopwords are function words like “the”, “a”, “and”, “of”, etc that are

often ignored in NLP applications
55

Conclusion: Words and tokens

56

Coding activity:
Preprocessing Airbnb listings

1. Go to this nbgitpuller link (also
available on course website)

2. Log in with your Pitt username if
necessary

3. Start a server with TEACH – 6
CPUs, 48 GB

4. Load custom environment at
/ix/cs2731_2025f/class_env

5. This should pull a folder
(cs2731_jupyterhub) into your
JupyterLab

57

Load in-class notebooks

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main

1. Double-click
session2_preprocessing
.ipynb on the left panel to open
the notebook

58

Open Jupyter notebook

● Each block is called a “cell”
○ Has input and possibly output
○ Input can be Python code, Markdown or shell commands (after !)

● Modes
○ Command mode

■ Move, select, manipulate cells
■ Get into command mode by clicking anywhere outside of a cell

○ Edit mode
■ Edit content of a particular cell

● Running cells
○ Click “Run” button or do Ctrl+Enter (on Windows or Linux, Cmd+Enter on

Mac) to run code or render Markdown
○ Any result will be shown in the output of the cell

59

Jupyter Notebook basics

61

Saving your work

62

Ending your session

Be sure to save your work
before ending the session

1. Select File > Hub Control
Panel

2. Click Stop My Server

63

Questions?

Enjoy Labor Day holiday

No class on Monday

	Slide 1
	Slide 2: CS 2731 Introduction to Natural Language Processing
	Slide 3
	Slide 4: Course logistics
	Slide 5: CRCD JupyterHub setup
	Slide 6: CRCD and JupyterHub
	Slide 7: Logging in to your CRCD JupyterHub account
	Slide 8: Starting a Jupyter Notebook on the CRCD JupyterHub
	Slide 10: Welcome to your JupyterLab
	Slide 11: Words and corpora
	Slide 12: How many words in this phrase?
	Slide 13: How many words in a corpus?
	Slide 14: Word frequencies: Heap’s Law
	Slide 15: Corpora vary along dimensions like
	Slide 16: Morphemes
	Slide 17: Morphemes
	Slide 18: Dealing with complex morphology is necessary for many languages
	Slide 19: Unicode
	Slide 20: Unicode
	Slide 21: ASCII: Some history for English
	Slide 22: Code Points
	Slide 23: Some code points
	Slide 24: Encodings and UTF-8
	Slide 25: Variable Length Encoding
	Slide 26: Tokenization
	Slide 27: Why tokenize?
	Slide 28: Space-based tokenization
	Slide 29: Issues in Tokenization
	Slide 30: Tokenization in languages without spaces between words
	Slide 31: Word tokenization in Chinese
	Slide 32: How to do word tokenization in Chinese?
	Slide 33: Word tokenization / segmentation
	Slide 34: Subword tokenization & BPE
	Slide 35: Another option for text tokenization
	Slide 36: Byte Pair Encoding (BPE) token learner
	Slide 37: BPE token learner
	Slide 38: BPE token learner
	Slide 39: BPE token learner
	Slide 40: BPE token segmenter algorithm
	Slide 41: Regular expressions (regex)
	Slide 42: Regular expressions
	Slide 43: Regular Expressions: Disjunctions (OR)
	Slide 44: Regular Expressions wildcards: *+.
	Slide 45: Regular expression example
	Slide 46: Errors
	Slide 47: Simple Application: ELIZA
	Slide 48: Simple Application: ELIZA
	Slide 49: How ELIZA works
	Slide 50: Other text preprocessing (normalization)
	Slide 51: Case folding (lowercasing)
	Slide 52: Lemmatization
	Slide 53: Stemming
	Slide 54: Stopword removal
	Slide 55
	Slide 56: Coding activity: Preprocessing Airbnb listings
	Slide 57: Load in-class notebooks
	Slide 58: Open Jupyter notebook
	Slide 59: Jupyter Notebook basics
	Slide 61: Saving your work
	Slide 62: Ending your session
	Slide 63

