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• Course logistics

• JupyterHub CRCD setup

• Words and corpora

• Morphemes

• Unicode

• Regular expressions

• Other text preprocessing

• Coding activity: preprocessing Airbnb listings
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Overview: Words and tokens



● Reading for today was Jurafsky & Martin sections 2-2.4, 2.6-2.7, 2.10

● I will release Homework 0 today or tomorrow unless we all get set 
up in class with CRCD JupyterHub fine

● Please remind me of your name before asking or answering a 
question (just this class session)
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Course logistics
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CRCD JupyterHub setup



● CRCD (Center for Research Computing and Data) is a Pitt center 
providing computing services on various clusters

● They maintain a JupyterHub where people can run Jupyter
Notebooks on their servers

● What we will be using the CRCD for:

○ Working through code examples in class

○ Writing code to submit as part of homework assignments

○ Running code and storing data for your projects (if you want to)
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CRCD and JupyterHub



1. Go to jupyter.crc.pitt.edu in a 
web browser

2. Log in with your Pitt 
credentials

Note that if you are off-campus, 
you have to log in to the Pitt VPN 
first through the GlobalProtect
app. Instructions: 
https://services.pitt.edu/TDClien
t/33/Portal/KB/ArticleDet?ID=293
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Logging in to your CRCD 
JupyterHub account

https://services.pitt.edu/TDClient/33/Portal/KB/ArticleDet?ID=293
https://services.pitt.edu/TDClient/33/Portal/KB/ArticleDet?ID=293


1. Partition: TEACH – 6 CPUs – 45 GB
We might use the GPU options later 
on in the course

2. Under Select Virtual Environment, 
keep base selected 
We might use a custom 
environment later on in the course

3. Click Start

4. Wait for the server to start up
8

Starting a Jupyter Notebook 
on the CRCD JupyterHub



Files are here

You can launch a new Jupyter
Notebook by clicking Python 3 
(ipykernel) under Notebook
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Welcome to your 
JupyterLab



Words and corpora
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they lay back on the San Francisco grass and looked at the stars 
and their

● How many?
○ 15 tokens (or 14 if you count "San Francisco" as one)
○ 13 types (or 12) (or 11?)

● Type: a unique word in the vocabulary
● Instance (token): an instance of a word type in running text
● Lemma: same stem, part of speech, rough word sense

○ cat and cats = same lemma
● Wordform: the full inflected surface form

○ cat and cats = different wordforms
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How many words in this phrase?

Slide adapted from Jurafsky & Martin



Corpus: a (machine-readable) collection of texts

N = number of word instances

V = vocabulary = set of types, |V| is size of vocabulary

Instances = N Types = |V|

Switchboard phone 
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million
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How many words in a corpus?

Slide adapted from Jurafsky & Martin



● Word (type) frequency is 
inversely proportional to 
word frequency rank

● "Long tail" of infrequent 
words

● Similar to Zipf’s Law
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Word frequencies: Heap’s Law

The Lexical Learner blog



● Texts don't appear out of nowhere! 
● Language: 7097 languages in the world
● Variety, like African American Language varieties.

○ AAE Twitter posts might include forms like "iont" (I don't)
● Code switching, e.g., Spanish/English, Hindi/English:

Por primera vez veo a @username actually being helpful! It was beautiful:) 

[For the first time I get to see @username actually being helpful! it was beautiful:) ] 

dost tha or ra- hega ... dont wory ... but dherya rakhe 

[“he was and will remain a friend ... don’t worry ... but have faith”] 

● Genre: newswire, fiction, scientific articles, Wikipedia
● Author Demographics: writer's age, gender, ethnicity, SES 
● Corpus datasheets [Bender & Friedman 2018, Gebru+ 2020] ask about 
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Corpora vary along dimensions like

Slide adapted from Jurafsky & Martin
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Morphemes



● Morphemes: small meaningful units that make up words
○ Roots: The core meaning-bearing units
○ Affixes: Parts that adhere to roots

● Affixes can add grammatical meaning (inflections, 2nd column) or 
modify semantic meaning (derivations, 3rd column)
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Morphemes

Slide adapted from Jurafsky & Martin, 
David Mortensen



○ e.g., the Turkish word:
Uygarlastiramadiklarimizdanmissinizcasina

'(behaving) as if you are among those whom we could not civilize'

Uygar 'civilized' + las 'become'
+ tir 'cause' + ama 'not able’ 
+ dik 'past’ + lar ‘plural’
+ imiz ‘1pl’ + dan ‘abl’ 
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 
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Dealing with complex morphology is necessary for many languages

Slide adapted from Jurafsky & Martin
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Unicode



Unicode

a method for representing written text in
• any character  (more than 150,000!)

• any script  (168 to date!)

• of the languages  of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…

• dead ones like Sumerian cuneiform

• invented ones like Klingon

• plus emojis, currency symbols, etc.
Slide adapted from Jurafsky & Martin
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ASCII: Some history for English

● 1 byte per character
● Set of letters without 

diacritical marks (such 
as accent marks, etc)

● Encodings for special 
characters used by 
teletypes, too

1960s American Standard Code for Information Exchange

Slide adapted from Jurafsky & Martin
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Code Points

● Unicode assigns a unique ID, a code point,  
to each of its 150,000 characters

● 1.1 million possible code points
○ 0 – 0x10FFFF

● Written in hex, with prefix "U+"

○ a is U+0061 which = 0x0061
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Slide adapted from Jurafsky & Martin



Some code points

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: a a a a
But all of them are U+0061, abstract "LATIN SMALL A"

23
Slide adapted from Jurafsky & Martin



Encodings and UTF-8

● We don't stick code points directly in files

● We store encodings of characters

● The most popular encoding is UTF-8

● Most of the web is stored in UTF-8
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Slide adapted from Jurafsky & Martin



Variable Length Encoding

● UTF-8 (Unicode Transformation Format 8)
● UTF-8 encoding of hello is : 

○ 68 65 6C 6C 6F 

● Code points ≥128 are encoded as a sequence 
of 2, 3, or 4 bytes 
○ First few bits say if its 2-byte, 3-byte, or 4-byte 
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Tokenization



Why tokenize?

● Using a deterministic series of tokens 
means systems can be compared equally
○ Systems agree on the length of a string

● Eliminates the problem of unknown words

Slide adapted from Jurafsky & Martin
27



● A very simple way to tokenize

● For languages that use space characters between words

○ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

● Segment off a token between instances of spaces
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Space-based tokenization

Slide adapted from Jurafsky & Martin



● Can't just blindly remove punctuation:
○ m.p.h., Ph.D., AT&T, cap’n
○ prices ($45.55)
○ dates (01/02/06)
○ URLs (http://www.pitt.edu)
○ hashtags (#nlproc)
○ email addresses (someone@cs.colorado.edu)

● Clitic: a word that doesn't stand on its own
○ "are" in we're, French "je" in j'ai, "le" in l'honneur

● When should multiword expressions (MWE) be words?
○ New York, rock ’n’ roll
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Issues in Tokenization

Slide adapted from Jurafsky & Martin



● Many languages (like Chinese, Japanese, Thai) don't use spaces to 
separate words!

● How do we decide where the token boundaries should be?
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Tokenization in languages without spaces between words

Slide adapted from Jurafsky & Martin



● Chinese words are composed of characters called "hanzi" (or 
sometimes just "zi")

● Each one represents a meaning unit called a morpheme
● Each word has on average 2.4 of them.
● But deciding what counts as a word is complex and not agreed upon.
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Word tokenization in Chinese

Slide adapted from Jurafsky & Martin



姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing  reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game
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How to do word tokenization in Chinese?

Slide adapted from Jurafsky & Martin



● In Chinese NLP it's common to just treat each character (zi) as a token.
○ So the segmentation step is very simple

● In other languages (like Thai and Japanese), more complex word 
segmentation is required.
○ The standard algorithms are neural sequence models trained by 

supervised machine learning.
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Word tokenization / segmentation

Slide adapted from Jurafsky & Martin
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Subword tokenization & BPE



● Use the data to tell us how to tokenize.
● Subword tokenization (because tokens can be parts of words as well 

as whole words)
● Many modern neural NLP systems (like BERT) use this to handle 

unknown words
● 2 parts:

○ A token learner that takes a raw training corpus and induces a vocabulary 
(a set of tokens).

○ A token segmenter that takes a raw test sentence and tokenizes it 
according to that vocabulary
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Another option for text tokenization

Slide adapted from Jurafsky & Martin



Byte Pair Encoding (BPE) token learner

Start with all characters
Repeat:

○ Choose most frequent 
neighboring pair ('A', 'B') 

○ Add a new merged symbol 
('AB') to the vocabulary

○ Replace every 'A' 'B' in the 
corpus with 'AB'. 

Until k merges

Vocabulary
[A, B, C, D, E]
[A, B, C, D, E, AB]
[A, B, C, D, E, AB, CAB]

Corpus
A  B  D  C  A  B  E  C  A  B 
AB D  C  AB E  C  AB
AB D  CAB E  CAB

Iteratively merge frequent neighboring tokens to create longer tokens.

36
Slide adapted from Jurafsky & Martin



Original (very fascinating ) corpus:

low low low low low lowest lowest newer newer newer newer newer 
newer wider wider wider new new

Split on whitespace, add end-of-word tokens _
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BPE token learner

Slide adapted from Jurafsky & Martin



● Merge e r to er

38

BPE token learner

Slide adapted from Jurafsky & Martin

● Merge er _ to er_
● Merge n e to ne



The next merges are:
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BPE token learner

Slide adapted from Jurafsky & Martin



● On the test data, run each merge learned from the training data:

○ Greedily, in the order we learned them

● So merge every e r to er, then merge er _ to er_, etc.

● Result: 

○ Test set "n e w e r _" would be tokenized as a full word 

○ Test set "l o w e r _" would be two tokens: "low er_"
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BPE token segmenter algorithm

Slide adapted from Jurafsky & Martin
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Regular expressions (regex)



● A formal language for specifying text strings

● How can we search for any of these?

○ woodchuck
○ woodchucks
○ Woodchuck
○ Woodchucks

Regular expressions

42Slide adapted from Jurafsky & Martin



● Letters inside square brackets []

● Ranges [A-Z] [a-z] [0-9]
● Negations [^A-Z]

○ Carat means negation only when first in []
● Sequence disjunctions with pipe |

○ groundhog|woodchuck

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit
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Regular Expressions: Disjunctions (OR)

Slide adapted from Jurafsky & Martin



Stephen C Kleene

Pattern Matches

oo*h 0 or more 
of previous 
char

oh ooh oooh ooooh

o+h 1 or more 
of previous 
char

oh ooh oooh ooooh

beg.n Any char begin begun begun 
beg3n
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Regular Expressions wildcards: *+.

Slide adapted from Jurafsky & Martin



● Find all instances of the word “the” in a text.
the

● Misses capitalized examples

[tT]he

● Incorrectly returns "other" or "theology"

[^a-zA-Z][tT]he[^a-zA-Z]
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Regular expression example

Slide adapted from Jurafsky & Martin



The process we just went through was based on 
fixing two kinds of errors:
1. Matching strings that we should not have matched (there, 

then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)

False negatives (Type II errors)
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Errors

Slide adapted from Jurafsky & Martin



● Early NLP system that imitated a Rogerian psychotherapist 
[Weizenbaum 1966]

● Uses pattern matching to match phrases

“I need X” 

● and translates them into, e.g.

“What would it mean to you if you got X? 

47

Simple Application: ELIZA

Slide adapted from Jurafsky & Martin



Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
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Simple Application: ELIZA

Slide adapted from Jurafsky & Martin



.* I’M (depressed|sad) .* → I AM SORRY TO HEAR YOU ARE \1 

.* all .* → IN WHAT WAY? 

.* always .* → CAN YOU THINK OF A SPECIFIC EXAMPLE?/

49

How ELIZA works

Slide adapted from Jurafsky & Martin
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Other text preprocessing (normalization)



● Applications like IR: reduce all 
letters to lowercase
○ Since users tend to use 

lowercase
○ Possible exception: upper case in 

mid-sentence?
■ e.g., General Motors
■ Fed vs. fed
■ SAIL vs. sail

● For sentiment analysis, MT, 
information extraction
○ Case is helpful (US versus us is 

important)
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Case folding (lowercasing)

Slide adapted from Jurafsky & Martin



Represent words as their lemma: their shared root, dictionary headword 
form:
○ am, are, is → be

○ car, cars, car's, cars' → car

○ Spanish quiero (‘I want’), quieres (‘you want’) 

→ querer ‘want'

○ He is reading detective stories 

→ He be read detective story 

52

Lemmatization

Slide adapted from Jurafsky & Martin



● Reduce terms to stems, chopping off affixes crudely

This was not the map we found in 
Billy Bones’s chest, but an 
accurate copy, complete in all 
things-names and heights and 
soundings-with

Thi wa not the map we found in 
Billi Bone s chest but an accur 
copi complet in all thing name 
and height and sound with

53

Stemming

Slide adapted from Jurafsky & Martin



● Do we want to keep "function words" like the, of, and, I, you, etc?

● Sometimes no (information retrieval)

● Sometimes yes (authorship attribution)

54

Stopword removal



● Word types are unique words
● Morphemes are the smallest meaning-bearing units within words
● Unicode represent characters for many languages and scripts in 

code points which can be encoded into bytes with UTF-8
● Tokenization: splitting texts into sequences of words

○ Subword tokenization finds tokens based on frequencies of sequences 
of characters in data

● Regular expressions match flexible sequences of characters 
● Lemmatization: normalizing words to their dictionary roots
● Stemming: chopping off affixes of words to reduce them to stems
● Stopwords are function words like “the”, “a”, “and”, “of”, etc that are 

often ignored in NLP applications
55

Conclusion: Words and tokens
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Coding activity: 
Preprocessing Airbnb listings



1. Go to this nbgitpuller link (also 
available on course website)

2. Log in with your Pitt username if 
necessary

3. Start a server with TEACH – 6 
CPUs, 48 GB

4. Load custom environment at 
/ix/cs2731_2025f/class_env

5. This should pull a folder 
(cs2731_jupyterhub) into your 
JupyterLab

57

Load in-class notebooks

https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main
https://jupyter.crc.pitt.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fmichaelmilleryoder%2Fcs2731_jupyterhub&urlpath=lab%2Ftree%2Fcs2731_jupyterhub%2F&branch=main


1. Double-click  
session2_preprocessing
.ipynb on the left panel to open 
the notebook

58

Open Jupyter notebook



● Each block is called a “cell”
○ Has input and possibly output
○ Input can be Python code, Markdown or shell commands (after !)

● Modes
○ Command mode

■ Move, select, manipulate cells
■ Get into command mode by clicking anywhere outside of a cell

○ Edit mode
■ Edit content of a particular cell

● Running cells
○ Click “Run” button or do Ctrl+Enter (on Windows or Linux, Cmd+Enter on 

Mac) to run code or render Markdown
○ Any result will be shown in the output of the cell
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Jupyter Notebook basics
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Saving your work
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Ending your session

Be sure to save your work 
before ending the session

1. Select File > Hub Control 
Panel

2. Click Stop My Server
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Questions?

Enjoy Labor Day holiday

No class on Monday
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