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CS 2731
Introduction to Natural Language Processing



● Go to Quizzes > Quiz 09-10 on Canvas

● You have until 2:45pm to complete it

● Allowed resources

○ Textbook

○ Your notes (on a computer or physical)

○ Course slides and website

● Resources not allowed

○ Generative AI

○ Internet searches
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Quiz



● Homework 1 will be released today or tomorrow

● Project idea form is due tomorrow, Thu Sep 11

○ You will be able to submit any project ideas that you’re interested in: 
from the example list or any you have on your own

○ It’s fine to incorporate your own research, there just needs to be an 
NLP component

○ You can submit multiple project ideas

● You will later choose from an anonymized list of project ideas on 
Project Match Day, next Wed Sep 17
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Course logistics

https://forms.cloud.microsoft/r/5kXGyMSFpF
https://forms.cloud.microsoft/r/5kXGyMSFpF
https://michaelmilleryoder.github.io/cs2731_fall2025/project.html#example-projects


● Language modeling

● N-gram language models

● Estimating n-gram probabilities

● Perplexity and evaluating language models

● Coding activity: build your own n-gram language model!
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Overview: N-gram language models part 1
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Structure of this course

Approaches How text is represented NLP tasks

statistical machine learning n-grams language modeling
text classification

language modeling
text classification
sequence labeling

NLP applications and ethics machine translation, chatbots, information retrieval, biasMODULE 5

MODULE 4

MODULE 3

MODULE 2

MODULE 1 Prerequisite skills for NLP text normalization, linear alg., prob., machine learning
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Introduction to language models
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Slide credit: David Mortensen
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Slide credit: David 
Mortensen



9
Slide credit: David Mortensen



10Slide credit: David Mortensen
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Slide credit: David Mortensen
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N-gram language models
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Slide credit: David Mortensen
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Slide credit: David Mortensen



15Slide credit: David Mortensen

The chain rule to compute the joint probability of words in a 
sentence



16Slide credit: David Mortensen

But this can’t be a valid estimate! “now is the winter of 
our” is going to very rare in corpora. It isn’t going to be 
a good estimate of its true probability.
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Slide credit: David Mortensen

Is P(discontent|now is the winter of our) really easier to 
compute than P(now is the winter of our discontent)?

How can the chain rule help us? We can cheat.



18Slide credit: 
David Mortensen

● We can obtain our estimate by only counting simpler things: “our 
discontent”, “discontent”, “of our”, etc

● N-gram language modeling is a generalization of this observation 
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This assumption is the Markov assumption

Slide credit: David Mortensen



20Slide credit: David Mortensen



21Slide credit: David Mortensen



22Slide credit: David Mortensen



23Slide credit: David Mortensen

N-gram models have trouble with long-range dependencies



24Slide credit: David Mortensen
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Sampling sentences from 
language models



● Choose a random bigram 
(<s>, w) according to its 
probability

● Now choose a random 
bigram (w, x) according to its 
probability

● And so on until we choose 
</s>

● Then string the words 
together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food
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The Shannon Visualization Method

Slide adapted from Jurafsky & Martin
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Estimating n-gram probabilities



28

Estimating bigram probabilities with the maximum likelihood 
estimate (MLE)

Slide credit: David Mortensen



<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>
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An example

Slide adapted from Jurafsky & Martin



can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Slide adapted from Jurafsky & Martin
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More examples: Berkeley Restaurant Project sentences



Out of 9222 sentences

Slide adapted from Jurafsky & Martin
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Raw bigram counts



Normalize by unigrams:

Result:

Slide adapted from 
Jurafsky & Martin
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Raw bigram probabilities



P(<s> I want english food </s>) =
P(I|<s>)   

× P(want|I)  
× P(english|want)   
× P(food|english)   
× P(</s>|food)

=  .000031

Slide adapted from Jurafsky & Martin
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Bigram estimates of sentence probabilities
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Slide adapted from David Mortensen

Optimize computation

Doing computation in log space is preferred for 
language models
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Perplexity and evaluating language models



36Slide credit: David Mortensen



37Slide credit: David Mortensen



38Slide credit: David Mortensen
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Perplexity evaluates the probability assigned by a model to a collection of test 
documents, controlling for length and is, thus, useful for evaluating LMs. 

A better model of a text is one which assigns a higher probability to words that 
actually occur in the test set. This will result in lower perplexity.

However: 

• It is a rather crude instrument 

• It sometimes correlates only weakly with performance on downstream tasks

• It’s only useful for pilot experiments 

• But it’s cheap and easy to compute, so it’s important to understand

Perplexity is an intrinsic metric for language modeling

Slide credit: David Mortensen



40Slide credit: David Mortensen
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Slide credit: David Mortensen



Training 38 million words, test 1.5 million words, 
WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Lower perplexity = better model

Slide adapted from Jurafsky & Martin
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Questions?
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