CS 2731 / ISSP 2230
 Introduction to Natural Language Processing

Session 10: N-gram language models, part 1

Michael Miller Yoder
February 12, 2024

Course logistics

- Homework 2 is due this Thu Feb 15
- Text classification
- Written and programming components
- Optional Kaggle competition for best LR and NN politeness classifiers
- Ask questions and offer answers on the Canvas discussion forum
- Homework 1 grades should be out today
- Projects
- Proposal and literature review is due Thu Feb 22
- Instructions are on the project webpage
- It's good to start the literature review early
- Look for NLP papers in ACL Anthology, Semantic Scholar, and Google Scholar

Lecture overview: N-gram language models, part 1

- Language modeling
- N-gram language models
- Estimating n-gram probabilities
- Perplexity and evaluating language models

Core tasks and applications of NLP

Introduction to language models

Language Models Estimate the Probability of Sequences

Which of these sentences would you be more likely to observe in an English corpus?

- Hugged I big brother my.
- I hugged my large brother.
- I hugged my big brother.

Language Models Estimate the Probability of Sequences

Which of following word would be most likely to come after "David hates visiting New..."

- York
- California
- giggled

These are actually instances of the same problem: the language modeling problem!

Language Modeling is Tremendously Useful

LMs (language models) are at the center of NLP today and have many different applications

- Machine Translation
P (high winds tonight) > P(large winds tonight)
- Spelling Correction
$P($ about fifteen minutes from $)>P($ about fifteen minuets from $)$
- Text Input Methods
$P(i$ cant believe how hot you are $)>P(i$ cant believe how hot you art)
- Speech Recognition

The Goal of Language Modeling

Compute the probability of a sequence of words/tokens/characters:

$$
\begin{gathered}
P(w)=P\left(w_{1}, w_{2}, w_{3}, w_{5}, \ldots, w_{n}\right) \\
P(I, \text { hugged, my, big, brother })
\end{gathered}
$$

This is related to next-word prediction:

$$
\begin{gathered}
P\left(w_{t} \mid w_{1} w_{2} \ldots w_{t-1}\right) \\
P(\text { York } \mid \text { David, hates, going, to, New })
\end{gathered}
$$

Do you compute either of these? Then you're in luck:

N -gram language models

The Chain Rule Helps Us Compute Joint Probabilities

The definition of conditional probability is

$$
P(B \mid A)=\frac{P(A, B)}{P(A)}
$$

which can be rewritten as

$$
P(A, B)=P(A) P(B \mid A)
$$

The Chain Rule Helps Us Compute Joint Probabilities

If we add more variables, we see the following pattern:

$$
\begin{aligned}
P(A, B, C) & =P(A) P(B \mid A) P(C \mid A, B) \\
P(A, B, C, D) & =P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
\end{aligned}
$$

which can be generalized as

$$
P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

The chain rule to compute the joint probability of words in a

 sentence$$
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

$P($ now is the winter of our discontent $)=$

$$
P(\text { now }) \times P(\text { is } \mid \text { now }) \times
$$

$P($ the \mid now is $) \times P($ winter \mid now is the $) \times$
$P($ of \mid now is the winter $) \times$
P (our|now is the winter of $) \times$
P (discontent|now is the winter of our)

How Are We Estimating these Probabilities?

Could we just count and divide?
$P($ discontent \mid now is the winter of our $)=$
$\frac{\text { Count(now is the winter of our discontent })}{\text { Count(now is the winter of our) }}$

But this can't be a valid estimate! How many times in a corpus are either "now is the winter of our" or "now is the winter of our discontent" going to occur? This cannot be an estimate of their true probability.

This May not Seem Very Helpful

Is P (discontent|now is the winter of our) really easier to compute than P (now is the winter of our discontent)?

How is the chain rule helping us? A peak back at Naïve Bayes may provide a hint: cheat.

Enter a Hero: Andrei Markov

Born
20 December 1978
(age 43)
Voskresensk,
Russian SFSR,
Soviet Union
6 ft 0 in (183 cm)
$203 \mathrm{lb}(92 \mathrm{~kg} ; 14 \mathrm{st}$
7 (b)
Defence
Khimik
Voskresensk
Dynamo Moscow
Montreal
Canadiens
Vityaz Chekhov
Ak Bars Kazan
Lokomotiv
Yaroslavl
1995-2020

Or, Rather, Andrey Markov

Born	14 June 1856 N.S. Ryazan, Russian Empire
Died	20 July 1922 (aged 66) Petrograd, Russian SFSR
Known for	Markov chains; Markov processes; stochastic processes
Fields	Mathematics, specifically probability theory and statistics

Doctoral advisor
Pafnuty
Chebyshev

Markov Did a Computational Linguistics

Interestingly, Markov's first application of his idea of Markov Chains was to language, specifically to modeling alliteration and rhyme in Russian poetry.

As such, he can be seen not only as a great mathematician and statistician, but also one of the forerunners of computational linguistics and computational humanities.

Markov Showed that You Could Make a Simplifying Assumption

One can approximate

P (discontent|now is the winter of our)

by computing
P(discontent|our)
or perhaps

P(discontent|of our)

- We only get an estimate this way, but we can obtain it by only counting simpler things: "our discontent", "discontent", "of our", etc
- Ngram language modeling is a generalization of this observation

This assumption is the Markov assumption

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right) \approx \prod P\left(w_{i} \mid w_{i-k} w_{i-1}\right)
$$

In other words, we approximate each component in the product:

$$
P\left(W_{i} \mid W_{1}, W_{2}, \ldots, W_{i-1}\right) \approx P\left(W_{i} \mid W_{i-k} \ldots W_{i-1}\right)
$$

We will now walk through what this looks like for different values of k.

$$
P\left(w_{1} w_{2} \ldots w_{i}\right) \approx \prod P\left(w_{i}\right)
$$

The probability of a sequence is approximately the product of the probabilities of the individual words.

Some automatically generated sequences from a unigram model:

- fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
- thrift, did, eighty, said, hard, 'm, july, bullish
- that, or, limited, the

What do you notice about them?

The Bigram Model $(k=2)$

If you condition on the previous word, you get the following:

$$
P\left(W_{i} \mid W_{1} W_{2} \ldots W_{i-1}\right) \approx P\left(W_{i} \mid W_{i-1}\right)
$$

Some examples generated by a bigram model:

- texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
- outside, new, car, parking, lot, of, the, agreement, reached
- this, would, be, a, record, november

The Trigram Model

The trigram model is just like the bigram model, only with a larger k :

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-2} w_{i-1}\right)
$$

The output of a trigram language model is generally much better than that of a bigram model provided the training corpus is large enough. Why do you need a larger corpus to train a trigram corpus than a bigram or unigram corpus?

N -gram models have trouble with long-range dependencies

In general, n-gram models are very impoverished models of language. For example, language has relationships that span many words:

- The students who worked on the assignment for three hours straight *is/are finally resting.
- The teacher who might have suddenly and abruptly met students is/*are tall.
- Violins are easy to mistakenly think you can learn to play *them/quickly.

Negative polarity: predict "some" vs "any"

- *I want any.
- I want some.
- I don't want any.
- *I think you said he thought we told them that she wants any.
- I think you said he thought we told them that she wants some.

Ngram LMs Are Often Adequate

Nevertheless, for many applications, ngram models are good enough (and they're super fast and efficient)

Estimating n-gram probabilities

Estimating bigram probabilities with the maximum likelihood estimate (MLE)

MLE for bigram probabilities can be computed as:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

which we will sometimes represent as

$$
P\left(W_{i} \mid W_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)}{C\left(w_{i-1}\right)}
$$

An example

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)} \begin{aligned}
& \text { <s> Sam I am </s> } \\
& <s>\mid \text { do not like green eggs and ham } \\
& \text { </s> }
\end{aligned}
$$

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)= & P(\mathrm{Sam}|<\mathrm{s}\rangle)= & P(\mathrm{am} \mid \mathrm{I})= \\
P(</ \mathrm{s}>\mid \mathrm{Sam})= & P(\mathrm{Sam} \mid \mathrm{am})= & P(\mathrm{do} \mid \mathrm{I})=
\end{array}
$$

More examples: Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i'm looking for tell me about chez panisse
can you give me a listing of the kinds of food that are available
i'm looking for a good place to eat breakfast when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

Normalize by unigrams:

Result:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

```
P(<s> | want english food </s>) =
P(|<s>)
    * P(wantl|)
    x P(english|want)
    x P(foodlenglish)
    x P(</s>/food)
        = .000031
```


Multiplication Considered Harmful

In reality, as was the case with NB classification, we do all of our computation in log space

- Avoid underflow Multiplying small probabilities by small probabilities results in very small numbers, which is problematic
- Optimize computation Addition is cheaper than multiplication

$$
\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}
$$

The are high-performance toolkits for n-gram language modeling

- SRILM http://www.speech.sri.com/projects/srilm/ - KenLM https://kheafield.com/code/kenlm/

Perplexity and evaluating language models

The Evaluation Process for ML Models

The goal of LM evaluation:

- Does our model prefer good sentences to bad sentences?
- Specifically, does it assign higher probabilities to the good/grammatical/frequently observed ones and lower probabilities to the bad/ungrammatical/seldom observed ones?

In ML evaluation, we divide our data into three sets: train, dev, and test.

- We train the model's parameters on the train set
- We tune the model's hyperparameters (if appropriate) on the dev set (which should not overlap with the train set
- We test the model on the test set, which should not overlap with train or dev

An evaluation metric tells us how well our model has done on test.

We Can Evaluate Models Intrinsically or Extrinsically

- Extrinsic Evaluation means asking how much the model contributes to a larger task or goal. We may evaluate an LM based on how much it improves machine translation over a BASELINE.
- Intrinsic Evaluation means measuring some property of the model directly. We may quantify the probability that an LM assigns to a corpus of text.

In general, EXTRINSIC EVALUATION is better, but more expensive and
time-consuming.

Extrinsic Evaluation of LMs

Best evaluation for comparing models A and B

- Put each model in a task (spelling corrector, speech recognizer, MT system)
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly?
- How many sentences translated correctly?
- Compare scores for A and B

This takes a lot of time to set up and can be expensive to carry out.

Perplexity is an intrinsic metric for language modeling

Perplexity evaluates the probability assigned by a model to a collection of text and is, thus, useful for evaluating LMs. Note:

- It is a rather crude instrument
- It sometimes correlates only weakly with performance on downstream tasks
- It's only useful for pilot experiments
- But it's cheap and easy to compute, so it's important to understand

Intuition of Perplexity

The Shannon Game:

O How well can we predict the next word?
I always order pizza with cheese and \qquad
The $33^{\text {rd }}$ President of the US was \qquad _

I saw a \qquad

- Unigrams are terrible at this game. (Why?)
?) $\left\{\begin{array}{l}\text { mushrooms } 0.1 \\ \text { pepperoni } 0.1 \\ \text { anchovies } 0.01 \\ \ldots . . \\ \text { fried rice } 0.0001 \\ \ldots . . \\ \text { and 1e-100 }\end{array}\right.$

- A better model of a text is one which assigns a higher probability to the word that actually occurs

$$
\begin{aligned}
P P(w) & =P\left(w_{1} w_{2} \ldots w_{n}\right)^{-\frac{1}{n}} & & \text { Definition } \\
& =\sqrt[n]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{n}\right)}} & & \text { Chain Rule } \\
& =\sqrt[n]{\prod_{i=1}^{n} \frac{1}{P\left(w_{i} \mid w_{1} w_{2} \ldots W_{i-1}\right)}} & & \text { For Unigrams } \\
& =\sqrt[n]{\prod_{i=1}^{n} \frac{1}{P\left(w_{i}\right)}} & & \text { For Bigrams } \\
& =\sqrt[n]{\prod_{i=1}^{n} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}} & &
\end{aligned}
$$

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign $P=1 / 10$ to each digit?

$$
\begin{aligned}
\operatorname{PP}(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\left(\frac{1}{10}^{N}\right)^{-\frac{1}{N}} \\
& =\frac{1}{10}^{-1} \\
& =10
\end{aligned}
$$

In general, a lower perplexity implies a better model.

Lower perplexity = better model

Training 38 million words, test 1.5 million words, WS

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Questions?

