
1
Source: Ramsri Goutham



Session 13: Transformers part 1, beam search

Michael Miller Yoder
February 21, 2024

2

CS 2731 / ISSP 2230
Introduction to Natural Language Processing



● Proposal and literature review is due tomorrow, Thu Feb 22
○ Instructions are on the project webpage
○ Submit on Canvas
○ One submission per group
○ Organize at least 4 papers into themes of approaches, datasets, 

findings
● Late work and resubmission policy clarifications on the syllabus

○ The latest you can submit homework is 2 weeks after the deadline 
(2.5% penalty/day)

○ If you are unsatisfied with your homework grade, resubmissions are 
generally possible

3

Course logistics

https://michaelmilleryoder.github.io/cs2731_spring2024/project


● Discussion post instead of reading quiz for Monday

● Homework 3 is out
○ Due Thu Mar 7 

4

Course logistics

https://michaelmilleryoder.github.io/cs2731_spring2024/hw3


● What helps learning
○ Reading before class to make lectures easy to digest
○ Interactive lectures

● What could be improved
○ Activities can slow pace of the lecture
○ Reading

■ Remove reading quizzes
■ If I read the whole thing, hard to pay attention in class

○ Homework
■ Less homework (not enough time)
■ Alignment between lectures and homework

○ Suggest additional reading materials for SOTA work

● What I will change
○ Work to integrate activities in lecture more cleanly
○ Consider lightening homework, aligning it better with lectures

5

Midterm OMET survey results (~20% response rate)



● Self-attention

● Multi-headed attention

● Residual connections and layer 
normalization

● Transformer blocks

● Beam search

● GPT preview

6

Lecture overview: Transformers part 1, beam search



7

From recurrence to self-attention



● Google introduced Transformers in 2017 [Vaswani et al. 2017, 
“Attention is all you need”]

● At that time, most neural NLP models were based on
○ RNNs
○ CNNs

● These were good 
● For many tasks, Transformers were better
● Has become the most successful NN architecture in NLP
● Adopted by famous pretrained LLMs (BERT, GPT)

8

Transformers improved on RNNs and CNNs

Slide adapted from David Mortensen



● RNNs are unrolled “left-to-right”.
○ This encodes linear locality: a 

useful heuristic!
○ Nearby words often affect each 

other’s meanings
● Problem: RNNs take O(sequence 

length) steps for distant word 
pairs to interact

9

Issues with recurrent models: Linear interaction distance

Slide adapted from John Hewitt



O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t 
the right way to think about sentences…

10

Issues with recurrent models: Linear interaction distance

Slide adapted from John Hewitt



Forward and backward passes have O(sequence length) unparallelizable 
operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed

• Inhibits training on very large datasets!

11

Issues with recurrent models: Lack of parallelizability

Slide adapted from John Hewitt



● Attention treats each word’s representation as a query to access and incorporate 
information from a set of values.

● We saw attention from the decoder to the encoder; today we’ll think about 
attention within a single sentence (self-attention)

● Number of unparallelizable operations does not increase with sequence length.
● Maximum interaction distance: O(1), since all words interact at every layer!

12

If not recurrence, then what? How about attention?

Slide adapted from John Hewitt



13
Slide credit: David Mortensen

Self-attention: all you need



14

Attention as a soft, averaging lookup table

Slide credit: John Hewitt



15
Slide credit: David Mortensen



16Slide credit: David Mortensen



17

Barriers and solutions for self-attention as a building block

Slide credit: John Hewitt



● Since self-attention doesn’t build in order information, we need to 
encode the order of the sentence in our keys, queries, and values.

● Consider representing each sequence index as a vector

● Don’t worry about what the 𝑝𝑖 are made of yet!
● Easy to incorporate this info into our self-attention block: just add 

the 𝒑𝑖 to our inputs!
● Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned 

embedding is:

18

Fixing the first self-attention problem: sequence order

Slide credit: John Hewitt



● Sinusoidal position representations: concatenate sinusoidal 
functions of varying periods:

19

Position embeddings through sinusoids

● Pros:
○ Periodicity indicates that maybe “absolute position” isn’t as important
○ Maybe can extrapolate to longer sequences as periods restart!

● Cons:
○ Not learnable; also the extrapolation doesn’t really work!

Slide adapted from John Hewitt



● Learned absolute position representations: Let all 𝑝𝑖 be learnable 
parameters!

● Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!
● Pros:

○ Flexibility: each position gets to be learned to fit the data
● Cons:

○ Definitely can’t extrapolate to indices outside 1, … , 𝑛.
● Most systems use this!
● Sometimes people try more flexible representations of position:
● Relative linear position attention [Shaw et al., 2018]
● Dependency syntax-based position [Wang et al., 2019]

20

Position embeddings learned from scratch

Slide adapted from John Hewitt



21

Barriers and solutions for self-attention as a building block

Slide credit: John Hewitt



22

Solution: add some feedforward NNs!

Slide credit: John Hewitt



23

Barriers and solutions for self-attention as a building block

Slide credit: John Hewitt



24

Multi-headed attention



25
Slide credit: David Mortensen



26

Hypothetical example of multi-headed attention

Slide credit: John Hewitt



Slide credit: John Hewitt 27

Multi-headed attention



28

Optimization tricks: residual connections 
and layer normalization



29

Residual connections [He et al. 2016]

Slide credit: John Hewitt



30

Layer normalization [Ba et al. 2016]

Slide credit: John Hewitt



31

Transformer blocks



32

The transformer decoder

The Transformer Decoder is a stack of 
Transformer Decoder Blocks.
• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm
• But for decoding (language modeling), we can’t 
look into the future!

Slide adapted from John Hewitt



33

Decoding: apply a “causal mask” for self-attention

Slide adapted from Tianxing He, John Hewitt

● To do auto-regressive LM, we need to apply a 
“causal” mask to self-attention, forbidding it 
from getting future context.

● At timestep t, we set 𝑎i = 0 for 𝑖 > 𝑡



The Transformer Decoder constrains to 
unidirectional context, as for language 
models.

• What if we want bidirectional context, 
as for text classification?

• This is the Transformer Encoder. The 
only difference is that we remove the 
masking in the self-attention.

34

The transformer encoder

no masking!

Slide adapted from John Hewitt



35

The transformer encoder-decoder

Slide adapted from John Hewitt

● Can use transformers for 
encoder-decoder (seq2seq) 
framework

● Transformer decoder modified to 
perform cross-attention to the 
output of the encoder



36
Slide adapted from David Mortensen

Encoders encode 
entire input 
sentences, so can 
look at future words

Decoders generate 
output text a step 
at a time, so can 
not look at future 
words (language 
modeling)



37

Cross-attention

Slide adapted from John Hewitt



● Quadratic compute in self-attention (today):
○ Computing all pairs of interactions means our computation grows 

quadratically with the sequence length!
○ For recurrent models, it only grew linearly!

● Can’t easily handle long sequences; usually set a bound of 512 tokens
● Position representations:

○ Are simple absolute indices the best we can do to represent position?
○ Relative linear position attention [Shaw et al., 2018]
○ Dependency syntax-based position [Wang et al., 2019]

38

Drawbacks of transformers

Slide adapted from John Hewitt



39

Beam search



● Traditional encoder-decoder framework involves generating highest 
probability word (argmax) at each timestep in the decoding

● But this greedy approach suffers from issues if choosing early 
high-probability tokens leads to low-probability sequences!

● Solution: Don’t commit to just the 1 highest probability word, but 
keep multiple options in a “beam”

● Prune to k highest-probability sequences
after each timestep

40

Beam search improves on greedy decoding

Image: iStock



41

Beam search example

Slide adapted from Jurafsky & Martin



● Transformers are a high-performing NLP architecture based on 
self-attention

● Transformers can be used for language modeling

● Beam search is used to find higher probability sequences than 
greedy approaches find in decoding

42

Wrapping up



43

Questions?


