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Markov jokes: 
Once you’ve heard the latest 
one, you’ve heard them all.
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Session 19: HMMs part 2, Viterbi algorithm, neural sequence labeling
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● Homework 3 grades released

● Homework 4 is due Mon Mar 25

○ Part 1: Do part-of-speech tagging manually with the Viterbi algorithm

○ Part 2:  Fine-tune BERT-based models for part-of-speech tagging in 
English and Norwegian

■ Copy and fill in a skeleton Colab notebook
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Course logistics: homeworks

https://michaelmilleryoder.github.io/cs2731_spring2024/hw4


● Project peer review due Wed Mar 27

○ Was released today

○ Form where you will review your own and your teammates’ 
contributions so far

○ Will not be used for grading, just for addressing any issues

● Basic working system due Thu Apr 4
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Course logistics: project

https://forms.gle/F8fhBkUpgCSJDTNA9


● HMMs review

● Training HMMs

● Decoding HMMs: Viterbi algorithm

● Sequence labeling with RNNs and transformers
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Overview: HMMs part 2, Viterbi alg, neural sequence labeling
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HMMs review



With a partner, review:

1. What are the 2 key assumptions that HMMs make?

2. What are the 2 key tables of probabilities in HMMs and what do they 
mean?
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HMM review
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Slide credit: David Mortensen

A formal definition of the Hidden Markov Model (HMM)
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Slide credit: David Mortensen
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An example HMM sequence

Slide adapted from David Mortensen
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Training HMMs



How do we learn the transition and emission probabilities?

● If we have (enough) data labeled with hidden and observed events, 
can just use MLE/relative frequencies with or without smoothing

● If we don’t have (enough) labeled data, can use the 
Forward-Backward Algorithm, a special case of the Expectation 
Maximization (EM) algorithm
○ We won’t go into the details of this algorithm, but the overview is that 

you start with an initial estimate and use that estimate to compute a 
better one iteratively
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Training an HMM
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Training HMMs with labeled data

Suppose we knew both the sequence of days in which a grad student is tired or 
rested and the number of Cokes Zero that she consumes each day:

How would you train an HMM?
Slide adapted from David Mortensen
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Using MLE to train HMMs

Slide adapted from David Mortensen
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Parameters of an HMM for POS

Slide adapted from David Mortensen

transition probabilities

emission probabilities
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Decoding HMMs: Viterbi algorithm



Input: A trained HMM and a series of observations 

Output: A series of labels, corresponding to hidden states of the HMM 

This task shows up many times: 

• Labeling words according to their parts of speech 

• Labeling words according to whether they are at the beginning, otherwise inside of, 
or outside of a name 

• Inferring the sequence of tired and not tired days in the month of your instructor 
based on his Coke Zero consumption

More formally, given as input an HMM λ = (A, B) and a sequence of observations O = o1, 
o2, . . . , oT, find the most probable sequence of states Q = q1, q2, . . . , qT
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Often, we want to decode HMMs

Slide adapted from David Mortensen



● Solves a larger problem by combining solutions to smaller 
subproblems

● Fills in a table for those subproblems

● Often used in NLP to compute optimal paths through sequences
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Dynamic programming
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Slide credit: David Mortensen
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● Computing the probability for all possible sequences of states with 
the forward trellis is computationally infeasible

● The set of possible state sequences (e.g. TTT, TRT, TRR, RRR, …) grows 
exponentially as the number of states N grows!

That’s where dynamic programming comes in!

● Skip the repeated computation by recording the best probabilities for 
subsequences along the way

● Viterbi algorithm
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Can we do better than the Forward Algorithm for decoding?

Slide credit: David Mortensen
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Slide credit: David Mortensen
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Slide adapted from David Mortensen
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Slide adapted from David Mortensen
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B I O

B 0 0.5 0.5

I .1 0 0.9

O 0.2 0 0.8

United States live in

B 0.8 0.3 0 0

I 0.1 0.6 0.1 0.1

O 0.1 0.1 0.9 0.9

π

B 0.2

I 0

O 0.8

To decode:
live in United States
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Neural sequence labeling
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RNNs can be used for sequence labeling

Slide adapted from Chris Manning



Slide adapted from Jurafsky & Martin 28

BERT can be used for sequence labeling
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An alternative to BIO: span-based NER

Slide adapted from Jurafsky & Martin



● If enough annotated training data is available, HMMs can be trained 
with MLE

● The Viterbi algorithm is used for decoding HMMs

● RNNs and transformers can be trained to do sequence labeling
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Wrapping up
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Questions?


