
CS 2731 Introduction to Natural Language Processing
Session 21: Dependency parsing

Michael Miller Yoder
March 27, 2024

1



● Project peer review due today, Wed Mar 27

○ Form where you will review your own and your teammates’ 
contributions so far

○ Will not be used for grading, just for addressing any issues

● Basic working project system due next Thu Apr 4

2

Course logistics: project

https://forms.gle/F8fhBkUpgCSJDTNA9


● No reading quizzes for the rest of the semester
● Optional discussion forum on the “Bender Rule” and the 

dominance of English in NLP for 3 points extra credit
○ Due Mon Apr 1 at 1pm

● Homework 4 grades will be out by next Mon Apr 1

3

Course logistics



● Syntax review
● Dependency grammar

○ Kinds of dependency in English

○ Dependencies and semantic roles

○ Dependency treebanks

● Dependency parsing
○ Transition-based dependency parsing

○ Projectivity

○ Evaluation

○ Tools and resources
4

Overview: Dependency parsing



5

Review: syntax



● Humans communicate complex ideas by composing words together 
into bigger units to convey complex meanings

● Human listeners need to work out what modifies (attaches to) what

● A model needs to understand sentence structure in order to be able 
to interpret language correctly

● Sometimes syntax can be ambiguous!

6

Why do we need sentence structure (syntax)?

Slide adapted from Chris Manning



7

Ambiguity: prepositional phrase attachment

Slide adapted from Chris Manning



8

Ambiguity: prepositional phrase attachment

Slide adapted from Chris Manning

Scientists count whales from space



Slide adapted from 
Chris Manning

9

Ambiguity: coordination scope



10

Review: different perspectives on syntax



11
Slide credit: David Mortensen



12
Slide credit: David Mortensen



13

Dependency grammar



14
Slide credit: David Mortensen



15
Slide credit: David Mortensen



16
Slide credit: David Mortensen



17
Slide credit: David Mortensen



18

Dependencies are useful for languages with free word order

Slide adapted from David Mortensen



19

Kinds of dependency in English



20
Slide credit: David Mortensen



21
Slide credit: David Mortensen



22
Slide credit: David Mortensen



23

Dependencies and who did what to whom?



24
Slide credit: David Mortensen



25
Slide credit: David Mortensen



26
Slide credit: David Mortensen



27

Practical example: extracting protein-protein interaction

Slide adapted from Chris Manning



28

Dependency treebanks



29
Slide credit: David Mortensen



30
Slide credit: David Mortensen



31

Dependency parsing



32
Slide credit: David Mortensen



33
Slide credit: David Mortensen



34
Slide credit: David Mortensen



35
Slide adapted from David Mortensen

Transition-based parsing 

● Proceed through a sequence of actions, building up a representation 
step by step 

● The representation, and any step, depends on the representations 
that came before

Graph-based parsing 

● Start with probabilities for each edge
● Apply some sort of dynamic programming

Two approaches to dependency parsing



36

Transition-based dependency parsing



● Process input from left-to-right once, making a sequence of greedy 
parsing decisions

● Represents the current state/configuration of the parse:
○ Stack
○ Buffer
○ Current set of relations

● In arc-standard parsing, possible actions are:
○ SHIFT: move first word in the buffer to the stack
○ LEFT-ARC: draw an arc from word in the top of the stack to second word 

in the stack; remove dependent word (second word)
○ RIGHT-ARC: draw an arc from second word in the stack to the top of the 

stack; remove dependent word (top of the stack)

37

Transition-based dependency parsing

Slide adapted from David Mortensen



38

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



39

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



40

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



41

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



42

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



43

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



44

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



45

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



46

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



47

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



48

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



49

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



50

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



51

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



52

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



53

Example of transition-based parsing

Slide adapted from Jurafsky & Martin



54
Slide credit: David Mortensen



55
Slide credit: David Mortensen



56
Slide credit: David Mortensen



57
Slide credit: David Mortensen



58
Slide credit: David Mortensen



59

Projectivity



● Definition of a projective parse: There are no crossing dependency 
arcs when the words are laid out in their linear order, with all arcs 
above the words

● Most syntactic structure is projective like this, but dependency theory 
normally does allow non-projective structures to account for 
displaced constituents
○ You can’t easily get the semantics of certain constructions right without 

these nonprojective dependencies

60

Projectivity

Slide adapted from Chris Manning



● The arc-standard algorithm we just presented only builds projective dependency 
trees

● Possible directions to head: 

1. Just declare defeat on nonprojective arcs  

2. Use a postprocessor to a projective dependency parsing algorithm to 
identify and resolve nonprojective links 

3. Add extra transitions that can model at least most non-projective 
structures (e.g., add an extra SWAP transition will allow any non-projectivity) 

4. Move to a parsing mechanism that does not use or require any constraints 
on projectivity (e.g., the graph-based MSTParser or Dozat and Manning (2017))

61

Handling non-projectivity

Slide adapted from Chris Manning



62

Evaluation



63
Slide credit: David Mortensen



64

Evaluation: an example

Slide adapted 
from Chris 
Manning



65

Tools and resources for 
dependency parsing



● UDPipe
○ Widely used
○ Provides parsing, morphological analysis, etc
○ A little harder to use than Stanza

● Stanza
○ New version of the classic Stanford Parser (which was in Java)
○ Pure Python

● spaCy (English)
○ Convenient Python library
○ Performs many other NLP tasks in addition to parsing
○ For the most part, is English-only

66

Dependency parsers

Slide adapted from David Mortensen



● The dependency grammar formalism models syntactic 
head-dependent relationships between words

● Dependency relationships are key to understanding who did what to 
whom (semantic roles)

● Key families of algorithms for dependency parsing include 
transition-based and graph-based parsers

67

Wrapping up



68

Questions?


