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● 1st year CS PhD student, UPitt

● Research interests: 

○ Reasoning
○ Fairness
○ Conversational AI (Samsung Bixby + SmartThings)

● Office Hours:
○ Monday: 9am - 11am
○ Online Zoom

https://pitt.zoom.us/j/2536481883
passcode: 0nNT7V

○ MailID: bkb45@pitt.edu

About Bhiman (TA)

https://pitt.zoom.us/j/2536481883


● Course logistics

● Basic terminology

● Regular expressions

● Text normalization
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Overview: Text normalization



● Reading for today was Jurafsky & Martin sections 2-2.4, 2.6

● First reading quiz is due next Wed, Jan 17 at 1pm before class

● Project survey due next Thursday, Jan 18 at 11:59pm

○ See project description

● Project groups will often be 3-4 students instead of 2

● Please remind me of your name before asking or answering a 
question (just this class session)
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Course logistics

https://forms.gle/dtRnWmCpe9C8TXSm9
https://michaelmilleryoder.github.io/cs2731_spring2024/project


NLP terminology: words and corpora
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they lay back on the San Francisco grass and looked at the stars and 
their
● How many?

○ 15 tokens (or 14 if you count "San Francisco" as one)
○ 13 types (or 12) (or 11?)

● Type: a unique word in the vocabulary
● Token: an instance of a word type in running text
● Lemma: same stem, part of speech, rough word sense

○ cat and cats = same lemma
● Wordform: the full inflected surface form

○ cat and cats = different wordforms
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How many words in this phrase?

Slide adapted from Jurafsky & Martin



Corpus: a (machine-readable) collection of texts
N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary
Tokens = N Types = |V|

Switchboard phone 
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million
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How many words in a corpus?

Slide adapted from Jurafsky & Martin



● Word (type) frequency is 
inversely proportional to 
word frequency rank

● "Long tail" of infrequent 
words
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Word frequencies: Zipf's Law

The Lexical Learner blog



● Texts don't appear out of nowhere! 
● Language: 7097 languages in the world
● Variety, like African American Language varieties.

○ AAE Twitter posts might include forms like "iont" (I don't)
● Code switching, e.g., Spanish/English, Hindi/English:

Por primera vez veo a @username actually being helpful! It was beautiful:) 
[For the first time I get to see @username actually being helpful! it was beautiful:) ] 
dost tha or ra- hega ... dont wory ... but dherya rakhe 
[“he was and will remain a friend ... don’t worry ... but have faith”] 

● Genre: newswire, fiction, scientific articles, Wikipedia
● Author Demographics: writer's age, gender, ethnicity, SES 
● Corpus datasheets [Bender & Friedman 2018, Gebru+ 2020] ask about 

this information 10

Corpora vary along dimensions like

Slide adapted from Jurafsky & Martin
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Regular expressions (regex)



● A formal language for specifying text strings

● How can we search for any of these?

○ woodchuck
○ woodchucks
○ Woodchuck
○ Woodchucks

Regular expressions

12Slide adapted from Jurafsky & Martin



● Letters inside square brackets []

● Ranges [A-Z] [a-z] [0-9]
● Negations [^A-Z] 

○ Carat means negation only when first in []
● Sequence disjunctions with pipe |

○ groundhog|woodchuck

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any digit
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Regular Expressions: Disjunctions (OR)

Slide adapted from Jurafsky & Martin



Stephen C Kleene

Pattern Matches
oo*h 0 or more 

of previous 
char

oh ooh  oooh ooooh

o+h 1 or more 
of previous 
char

oh ooh  oooh ooooh

beg.n Any char begin begun begun 
beg3n
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Regular Expressions wildcards: *+.

Slide adapted from Jurafsky & Martin
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Finite state automata (briefly)

A sheep language

Slide credit: David Mortensen



● Find all instances of the word “the” in a text.
the

● Misses capitalized examples
[tT]he

● Incorrectly returns "other" or "theology"
[^a-zA-Z][tT]he[^a-zA-Z]
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Regular expression example

Slide adapted from Jurafsky & Martin



The process we just went through was based on 
fixing two kinds of errors:
1. Matching strings that we should not have matched (there, 

then, other)
False positives (Type I errors)

2. Not matching things that we should have matched (The)
False negatives (Type II errors)
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Errors

Slide adapted from Jurafsky & Martin



● Say we want to put angles around all numbers after the word the:

        the 35 boxes 🡪 the <35> boxes 

● Use parens () to "capture" a pattern group and save to a numbered 
register \1

the ([0-9]+)

● Can substitute something for the group

In Python:

re.sub(r'the ([0-9]+)', 'the <\1>', input_text)
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Capture groups and regular expression substitution

"

Slide adapted from Jurafsky & Martin



● Early NLP system that imitated a Rogerian psychotherapist 
[Weizenbaum 1966]

● Uses pattern matching to match phrases

“I need X” 

● and translates them into, e.g.

“What would it mean to you if you got X? 
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Simple Application: ELIZA

Slide adapted from Jurafsky & Martin



Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
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Simple Application: ELIZA

Slide adapted from Jurafsky & Martin



.* I’M (depressed|sad) .* → I AM SORRY TO HEAR YOU ARE \1 

.* all .* → IN WHAT WAY? 

.* always .* → CAN YOU THINK OF A SPECIFIC EXAMPLE?/
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How ELIZA works

Slide adapted from Jurafsky & Martin



● Regular expressions play a surprisingly large role in NLP

○ Sophisticated sequences of regular expressions are often the first 
model for any text processing text

● For hard tasks, we use machine learning classifiers

○ But regular expressions are still used for pre-processing, or used 
to extract features for the classifiers
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Regular expressions summary

Slide adapted from Jurafsky & Martin
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Text normalization (preprocessing)



1. Tokenizing (separating) words
2. Normalizing word formats
3. Segmenting sentences
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Every NLP task requires text normalization

Slide adapted from Jurafsky & Martin
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Tokenization



● A very simple way to tokenize

● For languages that use space characters between words

○ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

● Segment off a token between instances of spaces
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Space-based tokenization

Slide adapted from Jurafsky & Martin



● Can't just blindly remove punctuation:
○ m.p.h., Ph.D., AT&T, cap’n
○ prices ($45.55)
○ dates (01/02/06)
○ URLs (http://www.pitt.edu)
○ hashtags (#nlproc)
○ email addresses (someone@cs.colorado.edu)

● Clitic: a word that doesn't stand on its own
○ "are" in we're, French "je" in j'ai, "le" in l'honneur

● When should multiword expressions (MWE) be words?
○ New York, rock ’n’ roll
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Issues in Tokenization

Slide adapted from Jurafsky & Martin



Tokenization in NLTK

● NLTK [Bird+ 2009] provides regex and ML models for tokenization (like punkt tokenizer)
● spaCy, other packages provide good tokenization
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Regex-based tokenization

Slide adapted from Jurafsky & Martin



● Many languages (like Chinese, Japanese, Thai) don't use spaces to 
separate words!

● How do we decide where the token boundaries should be?
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Tokenization in languages without spaces between words

Slide adapted from Jurafsky & Martin



● Chinese words are composed of characters called "hanzi" (or 
sometimes just "zi")

● Each one represents a meaning unit called a morpheme
● Each word has on average 2.4 of them.
● But deciding what counts as a word is complex and not agreed upon.
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Word tokenization in Chinese

Slide adapted from Jurafsky & Martin



姚明进入总决赛  “Yao Ming reaches the finals”

3 words?
姚明        进入      总决赛 
YaoMing  reaches  finals 

5 words?
姚       明      进入         总          决赛 
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚   明        进      入       总         决         赛 
Yao Ming enter enter overall decision game
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How to do word tokenization in Chinese?

Slide adapted from Jurafsky & Martin



● In Chinese NLP it's common to just treat each character (zi) as a token.
○ So the segmentation step is very simple

● In other languages (like Thai and Japanese), more complex word 
segmentation is required.
○ The standard algorithms are neural sequence models trained by 

supervised machine learning.
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Word tokenization / segmentation

Slide adapted from Jurafsky & Martin
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Subword tokenization & BPE



● Use the data to tell us how to tokenize.
● Subword tokenization (because tokens can be parts of words as well 

as whole words)
● Many modern neural NLP systems (like BERT) use this to handle 

unknown words
● 2 parts:

○ A token learner that takes a raw training corpus and induces a vocabulary 
(a set of tokens).

○ A token segmenter that takes a raw test sentence and tokenizes it 
according to that vocabulary
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Another option for text tokenization

Slide adapted from Jurafsky & Martin



Let vocabulary be the set of all individual characters 
= {A, B, C, D,…, a, b, c, d….}

Repeat:
○ Choose the two symbols that are most frequently adjacent in the training 

corpus (say 'A', 'B') 
○ Add a new merged symbol 'AB' to the vocabulary
○ Replace every adjacent 'A' 'B' in the corpus with 'AB'. 

Until k merges have been done.
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Byte Pair Encoding [BPE, Sennrich+ 2016] token learner

Slide adapted from Jurafsky & Martin



Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer newer newer 
newer wider wider wider new new

Split on whitespace, add end-of-word tokens _
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BPE token learner

Slide adapted from Jurafsky & Martin



● Merge e r to er
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BPE token learner

Slide adapted from Jurafsky & Martin

● Merge er _ to er_
● Merge n e to ne



The next merges are:
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BPE token learner

Slide adapted from Jurafsky & Martin



● On the test data, run each merge learned from the training data:

○ Greedily, in the order we learned them

● So merge every e r to er, then merge er _ to er_, etc.

● Result: 

○ Test set "n e w e r _" would be tokenized as a full word 

○ Test set "l o w e r _" would be two tokens: "low er_"
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BPE token segmenter algorithm

Slide adapted from Jurafsky & Martin



Usually include:
• frequent words
• frequent subwords

Which are often morphemes (meaningful word units) like -est or –er
• But are often not, too! (@@ is a token break)
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Properties of BPE tokens

Slide adapted from Jurafsky & Martin, David Mortensen
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Other preprocessing



● Applications like IR: reduce all 
letters to lowercase
○ Since users tend to use 

lowercase
○ Possible exception: upper case 

in mid-sentence?
■ e.g., General Motors
■ Fed vs. fed
■ SAIL vs. sail

● For sentiment analysis, MT, 
information extraction
○ Case is helpful (US versus us is 

important)
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Case folding (lowercasing)

Slide adapted from Jurafsky & Martin



Represent words as their lemma: their shared root, dictionary headword 
form:
○ am, are, is → be
○ car, cars, car's, cars' → car
○ Spanish quiero (‘I want’), quieres (‘you want’) 

→ querer ‘want'
○ He is reading detective stories 

→ He be read detective story 
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Lemmatization

Slide adapted from Jurafsky & Martin



● Morphemes: small meaningful units that make up words
○ Roots: The core meaning-bearing units
○ Affixes: Parts that adhere to roots

● Affixes can add grammatical meaning (inflections, 2nd column) or 
modify semantic meaning (derivations, 3rd column)
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Lemmatization is done by Morphological Parsing

Slide adapted from Jurafsky & Martin, 
David Mortensen



● cats into two morphemes cat and s

● Spanish amaren (‘if in the future they would love’) into morpheme 
amar ‘to love’ + morphological features 3PL + future subjunctive.
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Lemmatization is done by Morphological Parsing

Slide adapted from Jurafsky & Martin



○ e.g., the Turkish word:
Uygarlastiramadiklarimizdanmissinizcasina

'(behaving) as if you are among those whom we could not civilize'

Uygar 'civilized' + las 'become'
+ tir 'cause' + ama 'not able’ 
+ dik 'past’ + lar ‘plural’
+ imiz ‘1pl’ + dan ‘abl’ 
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 

46

Dealing with complex morphology is necessary for many languages

Slide adapted from Jurafsky & Martin



● Reduce terms to stems, chopping off affixes crudely

This was not the map we found in 
Billy Bones’s chest, but an 
accurate copy, complete in all 
things-names and heights and 
soundings-with

Thi wa not the map we found in 
Billi Bone s chest but an accur 
copi complet in all thing name 
and height and sound with
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Stemming

Slide adapted from Jurafsky & Martin



● Do we want to keep "function words" like the, of, and, I, you, etc?

● Sometimes no (information retrieval)

● Sometimes yes (authorship attribution)

48

Stopword removal



!, ? mostly unambiguous but period “.” is very ambiguous
○ Sentence boundary
○ Abbreviations like Inc. or Dr.
○ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as 
either (a) part of the word or (b) a sentence boundary. 
○ An abbreviation dictionary can help

Sentence segmentation can then often be done by rules based on this 
tokenization (period as a single token is an indication of a sentence 
boundary, e.g.).
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Sentence segmentation

Slide adapted from Jurafsky & Martin



50

Conclusion and example scenarios



● Regular expressions match flexible sequences of characters and 
allow substitution of groups of characters

● Tokenization: splitting texts into sequences of words
○ Subword tokenization finds tokens based on frequencies of sequences 

of characters in data
● Lemmatization: normalizing words to their dictionary roots
● Stemming: chopping off affixes of words to reduce them to stems
● Stopwords are function words like “the”, “a”, “and”, “of”, etc that are 

often ignored in NLP applications
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Conclusion: Text normalization



● Build a Chinese - French machine 
translation system

● Study what topics are generally 
discussed on an online forum 
through what words people 
commonly use

● Extract prices from a stock ticker

● Build a dialogue agent in Turkish

52

Preprocessing decisions: example scenarios

Preprocessing considerations:

● Tokenization issues?
● Lowercasing/case folding?
● Stem/lemmatize?
● Morphological analysis 

needed?
● Use regular expressions?
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Questions?

Enjoy MLK Day holiday

No class on Monday
First reading quiz due next Wed Jan 17 at 1pm
Project survey due next Thu Jan 18 at 11:59pm


