

https://xkcd.com/208/

CS 2731 / ISSP 2230 Introduction to Natural Language Processing

Session 2: Text normalization

Michael Miller Yoder

January 10, 2023

School of Computing and Information

About Bhiman (TA)

- 1st year CS PhD student, UPitt
- Research interests:
 - Reasoning
 - Fairness
 - Conversational AI (Samsung Bixby + SmartThings)

• Office Hours:

- Monday: 9am 11am
- Online Zoom

https://pitt.zoom.us/j/2536481883 passcode: 0nNT7V

• MailID: bkb45@pitt.edu

Overview: Text normalization

- Course logistics
- Basic terminology
- Regular expressions
- Text normalization

Course logistics

- Reading for today was Jurafsky & Martin sections 2-2.4, 2.6
- First reading quiz is due next Wed, Jan 17 at 1pm before class
- <u>Project survey</u> due next Thursday, Jan 18 at 11:59pm
 - See project description
- Project groups will often be 3-4 students instead of 2
- Please remind me of your name before asking or answering a question (just this class session)

NLP terminology: words and corpora

How many words in this phrase?

they lay back on the San Francisco grass and looked at the stars and their

- How many?
 - 15 tokens (or 14 if you count "San Francisco" as one)
 - 13 types (or 12) (or 11?)
- **Type**: a unique word in the vocabulary
- Token: an instance of a word type in running text
- Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
- Wordform: the full inflected surface form
 - **cat** and **cats** = different wordforms

Corpus: a (machine-readable) collection of texts *N* = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13+ million

Word frequencies: Zipf's Law

The Lexical Learner blog

Word (type) frequency is inversely proportional to word frequency rank

 ${
m frequency} \propto rac{1}{({
m rank}+b)^a}$

• "Long tail" of infrequent words

Corpora vary along dimensions like

- Texts don't appear out of nowhere!
- Language: 7097 languages in the world
- Variety, like African American Language varieties.
 - AAE Twitter posts might include forms like "iont" (I don't)
- **Code switching**, e.g., Spanish/English, Hindi/English:

Por primera vez veo a @username actually being helpful! It was beautiful:) [For the first time I get to see @username actually being helpful! it was beautiful:)] dost tha or ra- hega ... dont wory ... but dherya rakhe ["he was and will remain a friend ... don't worry ... but have faith"]

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES
- Corpus datasheets [Bender & Friedman 2018, Gebru+ 2020] ask about this information

10

Regular expressions (regex)

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions (OR)

• Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

- Ranges [A-Z] [a-z] [0-9]
- Negations [^A-Z]
 - Carat means negation only when first in []
- Sequence disjunctions with pipe |
 - \circ groundhog woodchuck

Pattern	Matches		
oo*h	0 or more of previous char	<u>oh ooh</u> <u>oooh</u> <u>ooooh</u>	
o+h	1 or more of previous char	<u>oh ooh</u> <u>oooh</u> <u>ooooh</u>	
beg.n	Any char	<u>begin begun begun</u> <u>beg3n</u>	

Stephen C Kleene

Finite state automata (briefly)

- When you follow such a transition, the symbol is "consumed"
- If consuming all of the symbols coincides with being at an accepting state, you win! (The FSA accepts the string).
- Otherwise, you lose! (The FSA rejects the string).

Regular expression example

- Find all instances of the word "the" in a text. **the**
- Misses capitalized examples
 [tT]he
- Incorrectly returns "other" or "theology"
 [^a-zA-Z][tT]he[^a-zA-Z]

The process we just went through was based on fixing two kinds of errors:

 Matching strings that we should not have matched (there, then, other)

False positives (Type I errors)

Not matching things that we should have matched (The)
 False negatives (Type II errors)

Capture groups and regular expression substitution

- Say we want to put angles around all numbers after the word *the*: the 35 boxes \square the <35> boxes
- Use parens () to "capture" a pattern group and save to a numbered register \1

the ([0-9]+)

• Can substitute something for the group

In Python:

re.sub(r'the ([0-9]+)', 'the <\1>', $input_text$)

Simple Application: ELIZA

- Early NLP system that imitated a Rogerian psychotherapist [Weizenbaum 1966]
- Uses pattern matching to match phrases

"I need X"

• and translates them into, e.g.

"What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike. IN WHAT WAY

- They're always bugging us about something or other. CAN YOU THINK OF A SPECIFIC EXAMPLE
- Well, my boyfriend made me come here. YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time. I AM SORRY TO HEAR YOU ARE DEPRESSED

- .* I'M (depressed|sad) .* → I AM SORRY TO HEAR YOU ARE \1
- .* all .* → IN WHAT WAY?
- .* always .* → CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Regular expressions summary

- Regular expressions play a surprisingly large role in NLP
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For hard tasks, we use machine learning classifiers
 - But regular expressions are still used for pre-processing, or used to extract features for the classifiers

Text normalization (preprocessing)

Every NLP task requires text normalization

- 1. Tokenizing (separating) words
- 2. Normalizing word formats
- 3. Segmenting sentences

Tokenization

Space-based tokenization

- A very simple way to tokenize
- For languages that use space characters between words
 - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
- Segment off a token between instances of spaces

Issues in Tokenization

- Can't just blindly remove punctuation:
 - o m.p.h., Ph.D., AT&T, cap'n
 - prices (\$45.55)
 - dates (01/02/06)
 - URLs (http://www.pitt.edu)
 - hashtags (#nlproc)
 - email addresses (someone@cs.colorado.edu)
- Clitic: a word that doesn't stand on its own
 "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
 New York, rock 'n' roll

Regex-based tokenization

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
   ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
. . .
\dots | \w+(-\w+)* # words with optional internal hyphens
... | \ \ d+(\ \ d+)?\%?
                        # currency and percentages, e.g. $12.40, 82%
.... | \.\.\.
                # ellipsis
[][.,;"'?():-_'] # these are separate tokens; includes ], [
    , , ,
. . .
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

- NLTK [Bird+ 2009] provides regex and ML models for tokenization (like punkt tokenizer)
- spaCy, other packages provide good tokenization

Tokenization in languages without spaces between words

- Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!
- How do we decide where the token boundaries should be?

Word tokenization in Chinese

- Chinese words are composed of characters called "hanzi" (or sometimes just "zi")
- Each one represents a meaning unit called a morpheme
- Each word has on average 2.4 of them.
- But deciding what counts as a word is complex and not agreed upon.

姚明进入总决赛 "Yao Ming reaches the finals"

3 words? 姚明 进入 总决赛 YaoMing reaches finals

5 words? 姚明进入总决赛 Yao Ming reaches overall finals

7 characters? (don't use words at all): 姚明进入总决赛 Yao Ming enter enter overall decision game

Word tokenization / segmentation

- In Chinese NLP it's common to just treat each character (zi) as a token.
 - So the **segmentation** step is very simple
- In other languages (like Thai and Japanese), more complex word segmentation is required.
 - The standard algorithms are neural sequence models trained by supervised machine learning.

Subword tokenization & BPE

Another option for text tokenization

- Use the data to tell us how to tokenize.
- **Subword tokenization** (because tokens can be parts of words as well as whole words)
- Many modern neural NLP systems (like BERT) use this to handle unknown words
- 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Let vocabulary be the set of all individual characters

= {A, B, C, D,..., a, b, c, d....}

Repeat:

- Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
- Add a new merged symbol 'AB' to the vocabulary
- Replace every adjacent 'A' 'B' in the corpus with 'AB'.

Until *k* merges have been done.

BPE token learner

Original (very fascinating²) corpus:

low low low low lowest lowest newer newer newer newer newer newer newer newer wider wider new new

Split on whitespace, add end-of-word tokens _

 corpus

 5
 1
 o
 w

 2
 1
 o
 w
 e
 s
 t

 2
 1
 o
 w
 e
 s
 t

 6
 n
 e
 w
 e
 r

 3
 w
 i
 d
 e
 r

 2
 n
 e
 w

vocabulary _, d, e, i, l, n, o, r, s, t, w

BPE token learner

- Merge e r to er
 - corpus
 - 5 low_
 - 2 lowest_
 - 6 newer_
 - 3 wider_
 - 2 new_
- Merge er _ to er_
- Merge n e to ne

vocabulary _, d, e, i, l, n, o, r, s, t, w, er

The next merges are:

 Merge
 Current Vocabulary

 (ne, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new

 (l, o)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo

 (lo, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low

 (new, er_)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_

 (low, _)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_, low_

BPE token segmenter algorithm

- On the test data, run each merge learned from the training data:
 - Greedily, in the order we learned them
- So merge every e r to er, then merge er _ to er_, etc.
- Result:
 - Test set "n e w e r _" would be tokenized as a full word
 - Test set "l o w e r _" would be two tokens: "low er_"

Properties of BPE tokens

Usually include:

- frequent words
- frequent subwords

Which are often morphemes (meaningful word units) like *-est* or *-er*

• But are often not, too! (@@ is a token break)

	peed	deed
Linguist ₁	pe@@ ed	deed
Linguist ₂	pee@@ d	deed
BPE ₁	pe@@ ed	de@@ ed
BPE_2	peed	deed

Other preprocessing

Case folding (lowercasing)

- Applications like IR: reduce all letters to lowercase
 - Since users tend to use lowercase
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, information extraction
 - Case is helpful (US versus us is important)

Represent words as their **lemma**: their shared root, dictionary headword form:

- \circ am, are, is \rightarrow be
- \circ car, cars, car's, cars' → car
- Spanish quiero ('I want'), quieres ('you want')
 - \rightarrow querer 'want'
- He is reading detective stories
 - \rightarrow He be read detective story

Lemmatization is done by Morphological Parsing

- Morphemes: small meaningful units that make up words
 - **Roots**: The core meaning-bearing units
 - Affixes: Parts that adhere to roots

un-think-able; kitten-s

• Affixes can add grammatical meaning (inflections, 2nd column) or modify semantic meaning (derivations, 3rd column)

<root></root>	<root>ing</root>	<root>er</root>
run	running	runner
think	thinking	thinker
program	programming	programmer
kill	killing	killer

Lemmatization is done by Morphological Parsing

- *cats* into two morphemes *cat* and *s*
- Spanish *amaren* ('if in the future they would love') into morpheme *amar* 'to love' + morphological features *3PL* + *future subjunctive*.

Dealing with complex morphology is necessary for many languages

```
\circ\, e.g., the Turkish word:
```

```
Uygarlastiramadiklarimizdanmissinizcasina
```

'(behaving) as if you are among those whom we could not civilize'

```
Uygar 'civilized' + las 'become'
```

```
+ <mark>tir</mark> 'cause' + <mark>ama</mark> 'not able'
```

```
+ dik 'past' + lar 'plural'
```

```
+ imiz '1pl' + dan 'abl'
```

```
+ mis 'past' + siniz '2pl' + casina 'as if'
```

Stemming

• Reduce terms to stems, chopping off affixes crudely

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with

Stopword removal

- Do we want to keep "function words" like *the, of, and, I, you,* etc?
- Sometimes **no** (information retrieval)
- Sometimes **yes** (authorship attribution)

Sentence segmentation

- !, ? mostly unambiguous but **period** "." is very ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence boundary.
 - \circ An abbreviation dictionary can help
- Sentence segmentation can then often be done by rules based on this tokenization (period as a single token is an indication of a sentence boundary, e.g.).

Conclusion and example scenarios

Conclusion: Text normalization

- Regular expressions match flexible sequences of characters and allow substitution of groups of characters
- Tokenization: splitting texts into sequences of words
 - Subword tokenization finds tokens based on frequencies of sequences of characters in data
- Lemmatization: normalizing words to their dictionary roots
- Stemming: chopping off affixes of words to reduce them to stems
- Stopwords are function words like "the", "a", "and", "of", etc that are often ignored in NLP applications

Preprocessing decisions: example scenarios

- Build a Chinese French machine translation system
- Study what topics are generally discussed on an online forum through what words people commonly use
- Extract prices from a stock ticker
- Build a dialogue agent in Turkish

Preprocessing considerations:

- Tokenization issues?
- Lowercasing/case folding?
- Stem/lemmatize?
- Morphological analysis needed?
- Use regular expressions?

Questions?

Enjoy MLK Day holiday

No class on Monday First reading quiz due next <mark>Wed Jan 17 at 1pm</mark> Project survey due next Thu Jan 18 at 11:59pm