

CS 2731 / ISSP 2230 Introduction to Natural Language Processing

Session 6: Logistic regression, part 1

Michael Miller Yoder

January 29, 2024

School of Computing and Information

Course logistics

• <u>Homework 1</u> due this Thu Feb 1

- Rubric has been posted on Canvas
- Feel free to ask questions in the Canvas discussion forum, email Bhiman or Michael, or come to office hours

• <u>Project pre-proposal form</u> is due Mon Feb 5

- Please plan meeting with your groups to discuss project ideas
- If you don't have any specific ideas, that's fine! We will help you come up with some.
- Submit 1 form per group through Google Forms. No need to submit anything on Canvas
- Homework 2 will be released tomorrow
 - Due Thu Feb 15
 - Text classification

Lecture overview: Logistic regression part 1

- Code walk-through: Clickbait classification with Naive Bayes in scikit-learn
- Discriminative vs generative classifiers
- Text classification with logistic regression

Code walk-through: Clickbait classification with Naive Bayes

Clickbait classification activity

- What steps are needed to go from labeled text data to a classifier?
 - Load in data, matched with labels
 - Preprocessing (tokenize, remove punctuation? lowercase?)
 - Extract features (bag of words, etc)
 - Train classifier
 - Test classifier
 - Interpret classifier
- Colab notebook here: <u>https://colab.research.google.com/drive/1QFYJjqkdKDh-OFr3aqdD4O</u> <u>kddYtq3QLB?usp=sharing</u>
- Data here:

<u>https://pitt-my.sharepoint.com/:x:/g/personal/mmy29_pitt_edu/Efc</u> <u>dzK1ZFL9Dr9ORqvY-O_oBATCBFVhLLD5vDxDItbhkhA?e=0H467X&downl</u> oad=1

Discriminative vs generative classifiers

An Example: Classifying Orchids

Cymbidium Phalaenopsis Features: type (terrestrial, epiphitic), stem shape (sympodial, monopodial), leaf shape (pointed, rounded) roots (thin,thick, tuberous), flowers (dorsal sepal, other sepals, petals, labelum, pollinia)

Build up a model of each class

Cymbidiums Semi-epiphetic, lithophytic, or terrestrial. Pseduobulb. Flowers in spikes. Bowl-shaped labellum. Glaborous seed capsule.

Phalaenopsis Epiphetic. Long, course roots. Short, leafy stems. Flowers in racemes or panicles. Spread sepals and petals. Petals much larger than sepals.

Find features that distinguish them

	Cymbs	Phals 1 -
pseudobulbs	Т	F
spikes	Т	F
panicles	F	Т
petals much larger than sepals	F	Т

Should we use generative or discriminative classifiers?

- **Generative:** builds a model of each of the categories, so it could generate instances of them
- **Discriminative:** weights most heavily the features that best discriminate between categories

Finding the correct class for an orchid

We can classify orchids generatively or discriminatively, where x is the orchid and ℓ is the class label

Naive Bayes

$$\hat{\ell} = \operatorname*{argmax}_{\ell \in \mathcal{L}} P(\mathbf{x}|\ell) P(\ell)$$

(compute the likelihood times the prior)

Logistic Regression

$$\hat{\ell} = \underset{\ell \in \mathcal{L}}{\operatorname{argmax}} P(\ell | \mathbf{X})$$

(compute the posterior directly)

We're going to classify documents in the same way!

Slide credit: David Mortensen

Generative vs discriminative classifiers

- Naive Bayes is a generative classifier
- Generative classifiers build a model of each class
 - P(d|c)P(c) = P(c,d) joint probability
 - Given an observation, return the class most likely to have generated that observation
- Discriminative classifiers instead learn what features are useful to discriminate between possible classes

 P(c|d) directly model conditional probability

Generative Classifiers and "Generative AI"

In 2023, journalists and MBAs became very interested in "Generative AI".

- DALL-E
- ChatGPT
- Stable Diffusion
- Midjourney

These are all generative models—like NB classifiers—in that they can **generate** novel outputs from the same distribution as their inputs. They are different from generative classifiers in that they typically take natural language PROMPTS as input. Logistic regression

- 1. A feature representation
- 2. A classification function
- 3. An objective function
- 4. An algorithm for optimizing the objective function

GENERAL	IN LOGISTIC REGRESSION	
feature representation	represent each observation $\mathbf{x}^{(i)}$ as a vector of fea- tures $[x_1, x_2, \dots, x_n]$ as we did with orchids	
classification function	sigmoid function (logistic function)	
objective function	cross-entropy loss	
optimization function	(stochastic) gradient descent	

train learn w (a vector of weights, one for each feature) and b (a bias) using stochastic gradient descent and cross-entropy loss.

test given a test example x, we compute p(y|x) using the learned weights w and b and return the label (y = 1 or y = 0) that has higher probability.

Classification with logistic regression

We will see the dot product a lot. It is the **sum** of the element-wise **product** of two vectors of the same dimensionality.

$$\begin{bmatrix} 2 & 7 & 1 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 2 \\ 8 \end{bmatrix} = 2 \cdot 8 + 7 \cdot 2 + 1 \cdot 8 = 38$$
(3)

Moving on...

For feature x_i , weight w_i tells us how important x_i is

- $x_i =$ "review contains awesome": $w_i = +10$
- $x_j =$ "review contains abysmal": $w_j = -10$
- $x_k =$ "review contains mediocre": $w_k = -2$

input observation feature vector $x = [x_1, x_2, ..., x_n]$ weights one per feature $W = [w_1, w_2, ..., w_n]$ plus w_0 , which is the bias b output a predicted class $\hat{y} \in \{0, 1\}$ For each feature x_i , weight w_i tells us the importance of x_i (and we also have the bias b that shifts where the function crosses the x-axis)

We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = \mathbf{w} \cdot \mathbf{x} + b$$

We compute

$$z = \mathbf{W} \cdot \mathbf{X} + b$$

If z is high, we say y = 1; if low, then y = 0.

orchids A classifiers for cymbidiums should return y = 1 when the input is a cymbidium and y = 0 otherwise.

sentiment A classifier for positive sentiment show return y = 1 when the input has positive sentiment (when the emotions of the writer towards the topic are positive) and y = 0 otherwise.

Remember this formula.

What does "sum is high" even mean?

Can't our classifier be like Naive Bayes and give us a probability? What we really want:

•
$$p(y = 1|x; \theta)$$

•
$$p(y=0|x;\theta)$$

Where x is a vector of features and $\theta = (w, b)$ (the weights and the bias).

z is just a number:

 $z = w \cdot x + b$

Solution: use a function of *z* that goes from 0 to 1, like the **logistic function** or **sigmoid function**:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The Sigmoid Function

- 1. Compute $w \cdot x + b$
- 2. Pass it through the sigmoid function: $\sigma(w \cdot x + b)$
- 3. Treat the result as a probability

Making Probabilities with Sigmoids

$$P(y = 1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y = 0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

$y = \begin{cases} 1 & P(y = 1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$

0.5 here is called the decision boundary

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(66) = 4.19$

Classifying Sentiment for Input *x*

Var	Definition	Val
<i>X</i> ₁	count(positive lexicon) \in doc	3
<i>X</i> ₂	$count(negative lexicon) \in doc$	2
<i>X</i> ₃	<pre>{ 1 if "no" ∈ doc 0 otherwise</pre>	1
X4	count(1st & 2nd pronouns) \in doc	3
<i>X</i> 5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
<i>x</i> ₆	log(word count of doc)	ln(66) = 4.19

Suppose w = [2.5, -0.5, -1.2, 0.5, 2.0, 0.7] and b = 0.1

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5.2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(0.833)$
= 0.70
$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5.2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(0.833)$
= 0.70 (positive sentiment)
 $p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$
= 0.30

Questions?

Homework 1 due next Thu Feb 1