What do you call a bad dream about machine learning?

A logistic nightmare

CS 2731 [ISSP 2230
Introduction to Natural Language Processing

Session 7: Logistic regression, part 2

Michael Miller Yoder
January 31, 2024

University of
Pittsbyurgh School of Computing and Information

Course logistics

e Homework 1 due tomorrow, Thu Feb 1

o Rubric has been posted on Canvas

o Feel free to ask questions in the Canvas discussion forum, email Bhiman or Michael

e Discussion forum post due Mon Feb 5, 1pm

o Discussion of bias in word embeddings. Additional reading of Blodgett et al. 2020

o Michael will post prompt tomorrow

o No reading quiz
e Project pre-proposal form is due Mon Feb 5

o Please plan meeting with your groups to discuss project ideas

o Ifyou don't have any specific ideas, that's fine! We will help you come up with some.

o Submit 1 form per group through Google Forms. No need to submit anything on Canvas
e Homework 2 on text classification is due Thu Feb 15

https://michaelmilleryoder.github.io/cs2731_spring2024/hw1
https://aclanthology.org/2020.acl-main.485.pdf
https://forms.gle/PTgXLUs6WCxLrgFt6
https://michaelmilleryoder.github.io/cs2731_spring2024/hw2

Lecture overview: logistic regression part 2

e Multinomial logistic regression classification

Learning the weights for features in logistic regression

©)

©)

©)

Cross-entropy loss function
Stochastic gradient descent
Batch and mini-batch training
Regularization

Training multinomial logistic regression

Multinomial logistic regression
classification

Softmax is a Generalization of Sigmoid

Sigmoid makes its output look like a
probability (forcing it to be between 0.0 and
1.0) and “squashes” it so that the output will
tend to 0.0 or 1.0. Concerned about one
class? Sigmoid Is perfect.

Slide credit: David Mortensen

For multiple classes, we do not want a
probability—we want a probability
distribution.

3[T ‘ll

Instead of a sigmoid function, we will use
SOFTMAX.

What is a Probability Distribution?

A probability distribution is a function giving the probabilities that different possible
outcomes of an experiment will occur. Our probability distributions will usually be over
DISCRETE RANDOM VARIABLES.

Classification of Orchids Language Identification
0.6 1 0.6 |
0.4 1
0.4
0.2
0.2 1
0 T T T
) £ £ £
al = g = = 0+ T T T T >
o o S o S £ o = £ =
k5 g = 8 g 2 5 = 5 2
o o 22 s £ & = = g e
T S g - < < - =
3=
a =

Slide credit: David Mortensen

The Softmax Function

The formula for the softmax function is

exp(z;)
S exp(z))

softmax(z;) = = <K

where K is the number of dimensions in the input vector z. Compare it to the formula for

the sigmoid function:
1

14 exp(—2)
The formulas are very similar, but sigmoid is a function from a scalar to a scalar, whereas
softmax is a function from a vector to a vector.

y=0a(2)

Slide credit: David Mortensen

Remember that, to compute z in logistic regression, we used the formula
Z=WX+Db

where w is a vector of weights, x is a vector of features, and b is a scalar bias term. Thus,
z is a scalar. For multinomial logistic regression, we need a vector z instead of a scalar z.
Our formula will be

z=Wx-+b

where W is a matrix with the shape [K x f] (where K is the number of output classes and f
is the number of input features). In other words, there is an element in W for each
combination of class and feature. x is a vector of features. b is a vector of biases (one for
each class).

Slide credit: David Mortensen

A Summary Comparison of Logistic Regression and Multinomial Logistic Regres-

sion

Logistic regression is
Y =o(wx+b)

where y is, roughly, a probability.

Multinomial logistic regression (or SOFTMAX REGRESSION) iS
y = softmax(Wx + b)

where ¥ is @ PROBABILITY DISTRIBUTION over classes, W is a class x feature weight matrix, x
Is a vector of features, and b is a vector of biases.

10
Slide credit: David Mortensen

Logistic regression: learning the weights

1

Wait, where did the w's come from?

Supervised classification:
* We know the correct label y (either 0 or 1) for each x.
* But what the system produces is an estimate,

We want to set w and b to minimize the distance between our
estimate yl) and the true yl.

* We need a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

12
Slide credit: Jurafsky & Martin

Learning components

A loss function:
mClross-entro Py lOSS

An optimization algorithm:
mstochastic gradient descent

13
Slide credit: Jurafsky & Martin

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
y [= either O or 1]

We'll call this difference:
L(y ,y) = how much y differs from the true y

Slide credit: Jurafsky & Martin

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) From the Bernoulli

Since there are only 2 discrete outcomes (0 or 1) we can distribution, also expressed
express the probability p(y|x) from our classifier (the thing as:
we want to maximize) as '

plyle)=17 LY =2
pOR) = (=)
noting:
if y=1, this simplifies to y |
if y=0, this simplifies to 1- y
y=0.3
I 0.2
| 1 (|| -

15
Slide adapted from Jurafsky & Martin

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: p(ylx) = (1 -9)'"
Now take the log of both sides (mathematmally handy)
Maximize: logp(ylx) = log[§” (1—9)"]
= ylogy+ (1 —y)log(1—7)

Whatever values maximize log p(y|x) will also maximize p(y|x)

16
Slide credit: Jurafsky & Martin

Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Lcg(9,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)]

17
Slide credit: Jurafsky & Martin

Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Leg(§,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)

This happens to be the formula for cross-entropy,
a measure of difference between distributions
from information theory

Claude Shannon

18
Slide credit: Jurafsky & Martin

Deriving cross-entropy loss for a single observation x

Now flip the sign to turn this into a loss: something to minimize
Minimize: Lcg(9,y) = —logp(ylx) = —[ylogy+(1—y)log(1—7)]

Plugging in the definition of ¥

Lee(9:y) = —[logo(w-x+b)+(1-y)log(l—o(w-x+Db))

19
Slide credit: Jurafsky & Martin

Let's see If this works for our sentiment example

We want loss to be:
« smaller if the model estimate Is close to correct

* Dbigger If model Is confused
Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises, and the writing is second-rate .

So why was it so enjoyable ? For one thing, the cast is great . Another nice touch
is the music . | was overcome with the urge to get off the couch and start
dancing . It sucked me in, and it'll do the same to you .

20
Slide credit: Jurafsky & Martin

Let's see If this works for our sentiment example

True value I1s y=1. How well is our model doing?

p(+/x)= P(Y=1|x) = s(w-x+b)
= s([25-50-1.2052007-321,30419]+ 0.1)
= s(.833)
= 070

Pretty well! What's the loss?

Lee(9,y) = —lylogo(w-x+b)+ (1 —y)log(l —o(w-x+Db))]
= —[logo(w-x+b)]
= —log(.70)
— 36 i}

Slide credit: Jurafsky & Martin

Let's see If this works for our sentiment example

Suppose true value instead was y=0.

p(-/x)= P(Y=20/x) = 1-s(w'x+Db)

= 0.30
What's the loss?
Leg(9,y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
_ —[log(1—0o(w-x+b))]
- —1log (.30)

— 1.2

22
Slide credit: Jurafsky & Martin

Let's see If this works for our sentiment example

The loss when model was right (if true y=1)

Leg(9,y) = —[ylogo(w-x+b)+ (1 —y)log(l —c(w-x+b))]
= —[logo(w-x+b)]
= —log(.70)
= 36
Is lower than the loss when model was wrong (if true y=0):
Leg(9,y) = —[vlogo(w-x+b)+(1—y)log(1 — o (w-x+b))]

- ~[log (1 - 6(w+x+b))

= —log (.30)

= 1.2

Sure enough, loss was bhigger when model was wrong!

23
Slide credit: Jurafsky & Martin

Stochastic gradient descent

24

Our Goal: Minimize the Loss

Let's make it explicit that the loss function is parameterized by weights 6 = (w, b).
We'll represent § as f(x; #) to make the dependency on § more obvious.

We want the weights that minimize the loss (Lcg), averaged over all examples:

. [. |
9= N i). gy. y{) 1
arggnm = ;_1 ce(f(x*; 6), ") (11)

25
Slide credit: David Mortensen

Slide credit: David Mortensen

The Intuition of Gradient Descent

Slide credit: David Mortensen

- You are on a hill
- It is your mission to reach the river at

the bottom of the canyon (as quickly as
possible)

- What is your strategy?

1. Determine in which direction the
steepest downhill slope lies

2. Take a step in that direction

3. Repeat until a step in any direction will
take you up hill

27

Our Goal: Minimize the Loss

For logistic regression, the loss function is convex

- Just one minimum
- Gradient descent is guaranteed to find the minimum, no matter where you start

Non-Convex Function

Non-Convex Function

local
minimum

global global
minimum minimum

28

Slide credit: David Mortensen

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss * Should we move
right or left from here?

0 (goal)

29
Slide adapted from Jurafksy & Martin

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss 1!

slope of loss at wl/

1S negative

So we'll move
positive (to the right)

A\

Slide adapted from Jurafksy & Martin

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

A

A
A

Loss

one step
of gradient

slope of loss at Wl//' descent

1S negative

So we'll move
positive (to the right) |

A J

Wl Wmin W
0 (goal)

Slide adapted from Jurafksy & Martin

A Gradient is a Vector Pointing in the Direction of Greatest Increase

The GRADIENT of a function of many variables is a vector pointing in the direction of the
greatest increase in a function.

GRADIENT DESCENT: Find the gradient of the loss function at the current point and move in
the opposite direction.

32
Slide credit: David Mortensen

How Much Do We Move in a Step?

- We move by the value of the gradient (in our example, the slope)

diWLCE(f(X; w),y)

weighted by the LEARNING RATE 7
- The higher the learning rate, the faster w changes:

Wer = W= 1 Le(f(w).) (12)

33
Slide credit: David Mortensen

How Do We Do Gradient Descent in N Dimensions?

We want to know where in the N-dimensional space (of the N parameters that make up 6)
we should move.

The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of the N dimensions.

34
Slide credit: David Mortensen

Imagine 2 dimensions, w and b

Visualizing the gradient COSt(W’b)
vector at the red point

It has two dimensions
shown In the x-y plane

Slide adapted from Jurafksy & Martin

But Real Gradients Have More than Two Dimensions

- They are much longer

- They have lots of weights

- For each dimension w;, the gradient component | tells us the slope w.rt. that variable

- “How much would a small change in w; influence the total loss function L?”
- The slope is expressed as the partial derivative 9 of the loss ow;

- We can then define the gradient as a vector of these partials

36
Slide credit: David Mortensen

Computing the Gradient

Let's represent § as f(x; #) to make things clearer:

[o L% 6),Y)
2 L(f(x:0),y)
Vol(f(x;6),y) = | awmL((X:6).Y)

| a0 L(f(x:0),y) |
Note that, since we are representing the bias b as wy, 6 iIs more-or-less equivalent to w.

What is the final equation for updating 8 based on the gradient?
Ory1 = 6: — nVL(f(x; 6),Y)
(For us, L is the cross-entropy l0ss Lcg).

37
Slide credit: David Mortensen

So What Are These Partial Derivatives Used in Logistic Regression?

The textbook lays out the derivation in §510 but here's the basic idea:

Here is the cross-entropy loss function (for binary classification):

Lee(V,y) = —[yloga(w - x + b) + (1 — y) log(1 — o(w - X + b))] (15)

The derivative of this function is:

aLCE(S}a y)

o [o(w - x + b) — y]x; (16)

which is very manageable!

38
Slide credit: David Mortensen

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f 1s a function parameterized by 6
x 1s the set of training inputs x(l), x2), s x(
y is the set of training outputs (labels) y) y@) L y(m)

m)

0<+0
repeat til done
For each training tuple (x(9, y(9) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
Compute §() = f£(x(9);0) # What is our estimated output §?
Compute the loss L($),y()) # How far off is y<i>) from the true output y()?
2. g VoL(f(x\;0),y®) # How should we move 6 to maximize loss?
3.00 —ng # Go the other way instead

return 6

Slide adapted from Jurafksy & Martin

39

A Sidenote: Hyperparameters

The learning rate (our n) is a hyperparameter, a term you will keep hearing
- Set it too high? The learner will catapult itself across the minimum and may not
converge
- Set it too low? The learner will take a long time to get to the minimum, and may not
converge in our lifetime
But what are hyperparameters again?
- Hyperparameters are parameters in a machine learning model that are not learned
empirically

- They have to be set by the human who is designing the algorithm

40

Slide credit: David Mortensen

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
x, =3 (count of positive lexicon words)

x, =2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in ©° are zero:
w,=w,=b =0
n=0.1

"

Slide adapted from Jurafksy & Martin

Example of gradient descent

Update step for update O is:

d =3; X, =2
Orr1 = 0; — Uy —L(f(x;0), y) ' ’
where JLce(J,y) .
8Wj - [(W X—|—b)] J

Gradient vector has 3 dimensions:

- dLcg(9y) T

s 7 N L)‘7)‘

ILcg(F.y)
|

42
Slide adapted from Jurafksy & Martin

Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3 x, =2
Orr1 = 0 — L(f(3359)a y) ' ’
dH
dLcg(9,
where BEVS) _ (o(w-x+b) 3k,

Gradient vector has 3 dimensions:

- dLcg(9y) T

P 8w1

L y,

3LCE<2)A’~,)’)

Ah

Slide adapted from Jurafksy & Martin

Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3 x, =2
Orr1 = 0 — L(f(3359)a y) ' ’
dH
dLcg(9,
where BEVS) _ (o(w-x+b) 3k,

Gradient vector has 3 dimensions:

— aL ’\’ —
HERLT [(otw-x+b)—ym
Vw,b = aLSIiV()'v}’) = (O‘(W X+ b) — y)xz
3LCE<2)A’~,)’) oc(w-x+b)—y

Ab

Slide adapted from Jurafksy & Martin

Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X =3; x, =2
Orr1 = 0 — L(f(:c;@), y) ' ’
dH
dLcg(9,
where CaEVS) _ lo(wx+b) Ix,

Gradient vector has 3 dimensions:

8w1A
Vs = ILcE(Py) | —

ow
dLcg (297)’)
Ah

[aLCE()’)\D’) 1l {

Slide adapted from Jurafksy & Martin

Example of gradient descent

Update step for update O is: w,=w,=b =0;
d X, =3, x, =2
Or1 = 0; — dH —L(f(z;0), y)
ILcx (5,
where CaEVS) _ (o (w-x+b) —ylx;

Gradient vector has 3 dimensions:

8w1A
Vs = ILcE(Py) | —

ow
dLcg (297)’)
Ah

[aLCE()’)\D’) 1l {

Slide adapted from Jurafksy & Martin

Example of gradient descent

dLcE(¥,y) 7 |
SO [U i ol B ol I ol B
achfygy) Lawx+b)—y J [0(0)—1 J [—0.5 J [—O.SJ

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

d —_ .
0t-|-1 = 9t — T}@L(‘f(x, 9), y) n=0.1;

0! =

Slide adapted from Jurafksy & Martin

Example of gradient descent

dLcE(¥,y) 7 |
SO [U i ol B ol I ol B
achlgé,y) [Gw-x+b)—y J [0(0)—1 J [—0.5 J [—O.SJ

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

01 = 0 — 77%[/(]0(333 0), y) n=0.1
[wy | 1.5
ol=1w, | —n | —1.0
b - —0.5

Slide adapted from Jurafksy & Martin

Example of gradient descent

- dwy {(G
L O
Vb = %ZW) = | (o
ILcE (YY)
ah

w-x+b)—y)x
w-x+b)—y)x;
LGW-X-{-b)—y J

|1

o I el i e

N

|05

Now that we have a gradient, we compute the new parameter vector
6! by moving 8° in the opposite direction from the gradient:

0r 1 =0; —

0! =

Slide adapted from Jurafksy & Martin

d
N—g L(f(2;0), y)
Wi 1 [—1.5-
wy | —m | —1.0
b | | -05

15

05

n=0.1;

Batch and mini-batch training

50

- In stochastic gradient descent, the algorithm chooses one random example at each
iteration

- The result? Sometimes movements are choppy and abrupt

- In practice, instead, we usually compute the gradient over batches of training
Instances

- Entire dataset: BATCH TRAINING
- m examples (e.g., 512 or 1024): MINI-BATCH TRAINING

51
Slide credit: David Mortensen

Regularization

52

Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

O A random word that perfectly predicts y (it happens to only occur in one class)
will get a very high weight.

O Failing to generalize to a test set without this word.

A good model should be able to generalize

53
Slide adapted from Jurafksy & Martin

Regularization Is One Solution to Overfitting

Add a regularization term R(6) to the loss function (which we will write, for now, as
maximizing log probability rather than minimizing loss):

m
g = argmaxz log P(y") | XY — aR(H) (29)
o =

The insight: we choose, for R(6), a function that penalizes large weights because fitting
the data well with big weights is not as good as fitting the data a bit less well with small
weights.

54
Slide credit: David Mortensen

In L2 Regularization, One Regularizes by the Sum of the Squares of the Weights

We can define R(#) as the (square of the) L2 norm, that is, the Euclidean distance from 6
to the origin.

n
R(O) = [I6]15 =) 67 (30)
j=1
If we L2 regularize the objective function, we get:

m n
f = argmax [Z log P(y1") | X(i))] — Z 0]-2 (31)
=

0 =1

The larger the weights are, the farther the vector will be from the origin, and thus the
more will be deducted from the log probability.

55

Slide credit: David Mortensen

L1 Regularization Regularizes by the Sum of the Absolute Value of the Weights

L1 Regularization (or the lasso regression) is named after the L1 norm ||W||;:

- The sum of the absolute value of the weights
- The MANHATTAN DISTANCE

R(0) = [0]|» = Z A (32)

When added (or rather, subtracted) from an objective function, it looks like this:

m n
f = argmax [Z log P(y"" | X(i))] —a Z 16| (33)
=1

e i=1
While the function is different, the insight is similar to that for the L2 norm.

56

Slide credit: David Mortensen

Training multinomial logistic regression

57

Categorical Cross-Entropy Loss for Multinomial Logistic Regression

How “distant” is y from y? One measure is

categorical cross-entropy loss:
Compare y, a ONE-HOT VECTOR (one one, all § 24

other eAlements zero) and e = Z T:log S,
y y =1
= —|1log, 0.775 + 0 log, 0.126 +
il 1 0 |[i2039 0l gcz) 070]
) og, U. + U log, 0.

0116 Lee(9,) 0 : .
55 > ’ = —log,0.775

' = 0.3677
0.070 0

The elements of y that correspond to
0-elements in y are effectively ignored.

58
Slide credit: David Mortensen

Generalizing Your Losses: The Negative Log Likelihood Loss

Reminder: the loss function for binary logistic regression (LR with two classes) is

Lee(9,y) = —log p(y | X) = —[ylog § + (1 — y) log(1 — §)] (23)

Note that we have two terms—one for when y = 1 and one for when y = 0—corresponding
to the two classes. What if we have K classes?

K

LCE(ya y) = — Z Ve |Og 9k (24)
h=1

= —logy. (where cisthe correct class) (25)

= —logp(yc=1|x) (where cis the correct class) (26)

exp(We - X + be)

2 (c is the correct class) (27)
> _j=1 €xp(w;j - X + bj)

= —log

How did we get from (24) to (25)? There is only one correct class.

Slide credit: David Mortensen

59

What We Actually Need to Compute Gradient Descent is the Gradient of the Loss

Consider one piece of the gradient—the derivative with respect to one weight.
- For each class k the weight of the ith element of x (the input features) is wy;.
- What is the partial derivative of Lee(Y,y) wrt wy, ;?
- It turns out, after some math, that the difference between the true value for the class

k (either 1 or 0) and the probability that the class outputs class k (weighted by the
value of the input x; corresponding to the ith element of the weight vector for class k.

OLck .
— (yr— JR)X, 28
W, (Ve — V)X (28)

- The rest of the procedure for training multinomial LR is the same as for binary LR.

60
Slide credit: David Mortensen

Questions?

Homework 1 due this Thu Feb 1

