CS 2731 / ISSP 2230
 Introduction to Natural Language Processing

Session 9: Feedforward neural networks

Michael Miller Yoder
February 7, 2024

Course logistics

- Homework 2 is due Thu Feb 15
- Text classification
- Written and programming components
- Optional Kaggle competition for best LR and NN politeness classifiers
- Projects
- Proposal and literature review is due Thu Feb 22
- Instructions are on the project webpage
- It's good to start the literature review early
- Look for NLP papers in ACL Anthology, Semantic Scholar, and Google Scholar

Lecture overview: feedforward neural networks

- Neural network fundamentals
- Non-linear activation functions
- Linear algebra review
- Feedforward neural networks as classifiers
- Training feedforward neural networks (backpropagation)

Neural network fundamentals

This is in your brain

Neural Network Unit: This is not in your brain

Output value

Non-linear transform

Weighted sum
Weights
Input layer

The Variables in Our Very Important Formula

$\mathbf{x} A$ vector of features of n dimensions (like number of positive sentiment words, length of document, etc.)
w A vector of weights of n dimensions specifying how discriminative each feature is
b A scalar bias term that shifts z
z The raw score
y A random variable (e.g., $y=1$ means positive sentiment and $y=0$ means negative sentiment

The Fundamentals

The fundamental equation that describes a unit of a neural network should look very familiar:

$$
\begin{equation*}
z=b+\sum_{i} w_{i} x_{i} \tag{1}
\end{equation*}
$$

Which we will represent as

$$
\begin{equation*}
z=\mathbf{w} \cdot \mathbf{x}+b \tag{2}
\end{equation*}
$$

But we do not use z directly. Instead, we pass it through a non-linear function, like the sigmoid function:

$$
\begin{equation*}
y=\sigma(z)=\frac{1}{1+e^{-z}} \tag{3}
\end{equation*}
$$

(which has some nice properties even though, in practice, we will prefer other functions like tanh and ReLU).

A Unit Illustrated

Take, for example, a scenario in which our unit has the weights [0.1, 0.4, 0.2] and the bias term 0.4 and the input vector x has the values [0.3, 0.2, 0.9].

Filling in the Input Values and Weights

Multiplying the Input Values and Weights and Summing Them (with the Bias Term)

Applying the Activation Function (Sigmoid)

Non-linear activation functions

Non-Linear Activation Functions

We're already seen the sigmoid for logistic regression:

$$
\begin{gathered}
\text { Sigmoid } \\
y=s(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

Non-Linear Activation Functions besides sigmoid

Most Common:

A little linear algebra

So Far, We Have Assume You Know Dot Products

$$
\begin{gathered}
\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right) \\
\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right) \\
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{gathered}
$$

Now, You Need to Multiply Matrices

A matrix is an array of numbers

$$
\left[\begin{array}{ccc}
6 & 4 & 24 \\
1 & -9 & 8
\end{array}\right]
$$

Two rows, three columns.

It's Easy to Multiple a Matrix by a Scalar

$$
2 \cdot\left[\begin{array}{ll}
5 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 \cdot 5 & 2 \cdot 2 \\
2 \cdot 3 & 2 \cdot 1
\end{array}\right]=\left[\begin{array}{cc}
10 & 7 \\
2 & 4
\end{array}\right]
$$

Multiplying Matrices by Matrices Is Slightly Trickier

Let a_{1} and a_{2} be the row vectors of matrix A and b_{1} and b_{2} be the column vectors of a matrix B. Find $C=A B$

$$
\left[\begin{array}{ll}
1 & 7 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 3 \\
5 & 2
\end{array}\right]=\left[\begin{array}{ll}
a_{1} \cdot b_{1} & a_{1} \cdot b_{2} \\
a_{2} \cdot b_{1} & a_{2} \cdot b_{2}
\end{array}\right]=\left[\begin{array}{cc}
38 & 17 \\
26 & 14
\end{array}\right]
$$

A must have the same number of rows as B has columns.

Multiplying a Matrix by a Vector Is Roughly the Same

Multiplying a matrix by a vector is like multiply a matrix by a matrix with one column:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right]
$$

The result is a vector.

Matrix multiplication is not hard but inference with neural nets is mostly this (plus some non-linear functions)

Feedforward neural networks

Adding multiple units to a neural network increases its power to learn patterns in data. Feedforward Neural Nets (FFNNs or MLPs)

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for historical reasons

The simplest FFNN is just binary logistic regression
(INPUT LAYER = feature vector)

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

Softmax is a Generalization of Sigmoid

Softmax will show up multiple times in this class as a way of converting numbers into probablities. For a vector z of dimensionality k, the softmax is:

$$
\begin{align*}
\operatorname{softmax}(\mathbf{z})= & {\left[\frac{\exp \left(z_{1}\right)}{\sum_{i=1}^{k} \exp \left(z_{i}\right)}, \frac{\exp \left(z_{2}\right)}{\sum_{i=1}^{k} \exp \left(z_{i}\right)}, \ldots, \frac{\exp \left(z_{n}\right)}{\sum_{i=1}^{k} \exp \left(z_{i}\right)}\right] } \tag{6}\\
& \operatorname{softmax}\left(z_{i}\right)=\frac{\exp \left(z_{1}\right)}{\sum_{j=1}^{k} \exp \left(z_{j}\right)} 1 \leq i \leq k \tag{7}
\end{align*}
$$

For example, if $z=[0.6,1.1,-1.5,1.2,3.2,-1.1]$ then
$\operatorname{softmax}(x)=[0.055,0.090,0.006,0.099,0.74,0.010]$

Probability distribution: a statistical

 function describing all the possible values/probabilities for a random variable within a given range.
The real power comes when multiple layers are added

Two-Layer Network with scalar output

Output layer (o node)

hidden units (o node)

Input layer (vector)

x_{1}

$$
\begin{aligned}
& y=\sigma(z) \text { y is a scalar } \\
& \mathrm{z}=U h
\end{aligned}
$$

$h=\sigma(W x+b)$

Two-Layer Network with scalar output

Output layer (o node)

hidden units
(o node)

Input layer (vector)

U

w
W... $y=\sigma(z)$ y is a scalar $\mathrm{z}=U h$
$h=\sigma(W x+b)$
b vector

Two-Layer Network with scalar output

Output layer (o node)

hidden units (o node)

Input layer (vector)

x_{1}

$$
\begin{aligned}
& y=\sigma(z) y \text { is a scalar } \\
& \mathrm{z}=U h
\end{aligned}
$$

$h=\sigma(W x+b)$

Two-Layer Network with softmax output

Output layer (o node)
hidden units (o node)

Input layer (vector)
$y=\operatorname{softmax}(z)$
$\mathrm{z}=U h$
y is a vector
$h=\sigma(W x+b)$

Multi-layer Notation

A Forward Pass in Terms of Multi-Layer Notation

for each $i \in 1$..n do $z^{[i]} \leftarrow W^{[i]} a^{[i-1]}+b^{[i]}$ $a^{[i]} \leftarrow g^{[i]}\left(z^{[i]}\right)$
end for
$\hat{y} \leftarrow a^{[n]}$

Replacing the bias unit

Instead of:

We'll do this:

Feedforward neural nets as classifiers

Classification: Sentiment Analysis

We could do exactly what we did with logistic regression Input layer are binary features as before Output layer is 0 or 1

Sentiment Features

```
Var Definition
    \(x_{1} \quad\) count(positive lexicon) \(\in\) doc)
    \(x_{2} \quad\) count(negative lexicon) \(\in\) doc)
    \(x_{3} \quad\left\{\begin{array}{l}1 \text { if "no" } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.\)
    \(x_{4} \quad\) count (1st and 2 nd pronouns \(\in \operatorname{doc}\) )
    \(x_{5} \quad\left\{\begin{array}{l}1 \text { if "!" } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.\)
\(x_{6} \quad \log\) (word count of doc)
```


Feedforward nets for simple classification

Logistic Regression

Just adding a hidden layer to logistic regression

$f_{1} \quad f_{2}$
f_{n}

- allows the network to use non-linear interactions between features
- which may (or may not) improve performance.

Even better: representation learning

The real power of deep learning comes from the ability to learn features from the data
Instead of using hand-built human-engineered features for classification

Use learned representations like embeddings!

Neural net classification with embeddings as input features!

Issue: texts come in different sizes

This assumes a fixed size length (3)! Kind of unrealistic.
 Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review

- If shorter then pad with zero embeddings
- Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words

- Take the mean of all the word embeddings
- Take the element-wise max of all the word embeddings

Reminder: Multiclass Outputs

What if you have more than two output classes?

- Add more output units (one for each class)
- And use a "softmax layer"

$$
\operatorname{softmax}\left(z_{i}\right)=\frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{z_{j}}} 1 \leq i \leq D
$$

Training feedforward neural networks

Intuition: training a 2-layer Network

Remember stochastic gradient descent from the logistic regression lecture-find gradient and optimize

The Intuition Behind Training a 2-Layer Network

For every training tuple (x, y)

1. Run forward computation to find the estimate \hat{y}
2. Run backward computation to update weights

- For every output node
- Compute the loss L between true y and estimated \hat{y}
- For every weight w from the hidden layer to the output layer: update the weights
- For every hidden node
- Assess how much blame it deserves for the current answer
- From every weight w from the input layer to the hidden layer
- Update the weight

Computing the gradient requires finding the derivative of the loss with respect to each weight in every layer of the network.
Error backpropagation through computation graphs.

Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to weights $\frac{d}{d w} L(f(x ; w), y)$
To tell us how to adjust weights for each training item

- Move them in the opposite direction of the gradient

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta \frac{d}{d w} L_{C E}(f(\mathrm{x} ; \mathrm{w}), y)
$$

- For logistic regression

$$
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

Where did that derivative come from?

Using the chain rule! $f(x)=u(v(x))$ Intuition (see the text for details)

$$
\frac{d f}{d x}=\frac{d u}{d v} \cdot \frac{d v}{d x}
$$

Derivative of the weighted sum Derivative of the Activation

Derivative of the Loss

$$
\frac{\partial L}{\partial w_{i}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w_{i}}
$$

How can I find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight layer: the last one!
What about deeper networks?

- Lots of layers, different activation functions?

Solution:

- Even more use of the chain rule!!
- Computation graphs and error backpropagation!

Why Computation Graphs

For training, we need the derivative of the loss with respect to each weight in every layer of the network

- But the loss is computed only at the very end of the network!
Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)
- Relies on computation graphs.

Computation Graphs

A computation graph represents the process of computing a mathematical expression

Example:

$$
\begin{array}{r}
L(a, b, c)=c(a+2 b) \\
d=2 * b
\end{array}
$$

Computations:

$$
e=a+d
$$

$$
L=c * e
$$

Example:

$$
\begin{array}{r}
L(a, b, c)=c(a+2 b) \\
d=2 * b
\end{array}
$$

Computations:

$$
\begin{aligned}
e & =a+d \\
L & =c * e
\end{aligned}
$$

Backwards differentiation in computation graphs

- The importance of the computation graph comes from the backward pass
- This is used to compute the derivatives that we'll need for the weight update.
- How does a small change in that weight affect the final loss?

Example

$$
L(a, b, c)=c(a+2 b)
$$

$$
\begin{aligned}
d & =2 * b \\
e & =a+d \\
L & =c * e
\end{aligned}
$$

We want:

$$
\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}, \text { and } \frac{\partial L}{\partial c}
$$

The derivative $\frac{\partial L}{\partial a^{\prime}}$ tells us how much a small change in a affects L.

The chain rule

Computing the derivative of a composite function:

$$
\begin{array}{ll}
f(x)=u(v(x)) & \frac{d f}{d x}
\end{array}=\frac{d u}{d v} \cdot \frac{d v}{d x}, ~ f(x)=u(v(w(x))) \quad \frac{d f}{d x}=\frac{d u}{d v} \cdot \frac{d v}{d w} \cdot \frac{d w}{d x}
$$

Example

$$
L(a, b, c)=c(a+2 b)
$$

$$
\begin{array}{rlrl}
d & =2 * b & \\
e & =a+d \\
L & =c * e & \frac{\partial L}{\partial c} & =e \\
& \frac{\partial L}{\partial a} & =\frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \\
& \frac{\partial L}{\partial b} & =\frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}
\end{array}
$$

Example

$$
\begin{aligned}
\frac{\partial L}{\partial a} & =\frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \\
\frac{\partial L}{\partial b} & =\frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}
\end{aligned}
$$

$$
L=c e: \quad \frac{\partial L}{\partial e}=c, \frac{\partial L}{\partial c}=e
$$

$$
\mathrm{a}=3 \quad \frac{\partial L}{\partial b}=\frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}
$$

Backward differentiation on a two layer network

Backward differentiation on a two layer network

$$
\begin{array}{rlrl}
z^{[1]} & =W^{[1]} \mathbf{x}+b^{[1]} \\
a^{[1]} & =\operatorname{ReLU}\left(z^{[1]}\right) & & \\
z^{[2]} & =W^{[2]} a^{[1]}+b^{[2]} & \frac{\operatorname{ReU}(z)}{d z}= \begin{cases}0 \text { for } \\
1 \text { for }\end{cases} \\
a^{[2]} & =\sigma\left(z^{[2]}\right) & \frac{d \sigma(z)}{d z}=\sigma(z)(1-\sigma(z)) \\
\hat{y} & =a^{[2]}
\end{array}
$$

Backward differentiation on a two layer network

Summary

For training, we need the derivative of the loss with respect to weights in early layers of the network

- But loss is computed only at the very end of the network!

Solution: backpropagation

Given a computation graph and the derivatives of all the functions in it we can automatically compute the derivative of the loss with respect to these early weights.

Questions?

